论文部分内容阅读
近年来气候变化及人类的活动导致寒区土体的温湿度发生了一系列的变化,这引起了土体物理力学特性的改变,造成土体中基础的承载性能发生变动并影响了基础的安全使用。目前对土体参数变化条件下基础承载力及变形响应情况尚未有完备的研究,论文首先研究了青藏高原的温度及湿度的变化情况,根据土体湿度变化情况设计了一系列的室内试验,确定了桩周土体及桩土接触面的力学参数变化规律,然后建立温度场分析模型对桩土体系的冻土上限进行了计算,最后通过建立力学模型的方式对桩基础在上拔荷载下的承载力及变形响应情况进行了分析,可为评价接触网立柱桩基础的长期承载情况提供参考。针对桩体所处的环境动态变化问题,主要进行了环境温湿度变化的研究。首先通过文献查阅的方式,获取青藏高原近60年的降水数据及近30年的地表温度数据,然后通过数理统计的方式对降水量及地表温度随时间的变化规律进行分析,结果表明青藏高原温度和湿度均会随时间推移发生增大,未来50年内冻土湿度会有6%的增加,温度会升高1℃,这可为确定任意时刻冻土所处的环境提供基础参考。针对桩土体系的物理力学参数随土体温湿度变化的问题,设计了包含土体物理特性试验、三轴压缩试验、接触面直剪试验等一系列的室内试验。通过对试样设置不同梯度的含水率及不同冻融循环次数的方式,得出了土体及桩土接触面的力学参数随时间及土体含水率的变化规律。结果表明,随着含水率的增大,桩周土体粘聚力及内摩擦角均会减小,桩土接触面的粘聚力会发生增大,内摩擦角会减小,这为确定不同时刻土体及接触面的参数变化情况提供了基础依据。针对桩土体系温度场随时间的变化问题,以青藏铁路某段中的接触网立柱桩基础为依据,通过FLAC3D数值模拟软件建立了桩土体系温度场计算模型,分别模拟2019年、2029年、2039年、2049年、2059年、2069年桩土体系的温度场,通过温度场的分布确定冻土上限的位置,分析桩体附近及远端土体上限的变化趋势,计算桩体在温度场变化情况下的上拔承载力。结果表明,未来50年内桩体附近的冻土上限位置先上升后下降,远端土体处的冻土上限位置在逐渐下降,桩基础的上拔承载力在逐渐减小。这可为土体