论文部分内容阅读
随着我国高速铁路技术的迅速发展,安全、高速、准时、舒适成为我们追求的目标,车辆运行振动问题也成为学者研究的重点。车辆高速行驶过程中会受到轨道不平顺的激励,导致车辆以及部件产生垂向振动和横向振动。空气弹簧是车辆整个减振系统中的重要元件,主要优势体现在高度可调节、能够提供较大阻尼、大变位、刚度成非线性等特点。研究空气弹簧参数对车辆动力学影响可以为空气弹簧改良和提高车辆运行品质提供参考,具有很大的现实意义。
首先采用限元软件ABAQUS建立空气弹簧有限元模型,研究车辆二系悬挂空气弹簧自身的力学性能,得到空气弹簧位移-荷载响应曲线和内部应力云图,根据所得响应曲线数据计算空气弹簧的静刚度、动刚度,研究空气弹簧参数对自身力学性能影响。其次在多体动力学软件UM中建立车体、构架、轮对、一系列减振悬挂系统、二系减振悬挂系统、轨道等部件的动力学模型,研究空气弹簧刚度、阻尼等参数改变对车辆动力学影响。最后本文综合对比分析了空气弹簧不同刚度、不同节流孔直径对于车辆通过曲线动力学性能影响,研究结果表明:
空气弹簧力学性能分析:空气弹簧垂向位移与载荷近似呈正比,垂向刚度随着帘线角度减少而减少,横向刚度随着帘线角度增大而减小。空气弹簧横向刚度随着帘线层数的增多而增大,帘线层数对垂向刚度影响较小。空气弹簧横向刚度随着帘线角度减小而减小,橡胶囊内部压力小于0.15Mpa时横向变形比较明显,当橡胶囊内部压力越高越不容易产生横向形变,但是如果内部压强过大也会导致空气弹簧横向性能变差。
空气弹簧动力学分析:空气弹簧横向刚度对于车辆横向稳定性Sperling指标影响较小,空气弹簧刚度激增会造成车辆横向加速度和横向位移均产生突变,刚度激增对垂向平稳性影响较小,车辆垂向稳定性指标随着空气弹簧垂向刚度的增加而增加。空气弹簧刚度增加导致轮重减载率、蠕滑力增加。车辆通过曲线时增大刚度会让脱轨系数、轮重减载率都增大。空气弹簧频率比?为1时车辆系统产生共振,调节阻尼无作用;当η<√2时,阻尼越小振动越强烈;当η>√2时,阻尼越大振动越强烈,过高的阻尼反而会加剧振动。振动加速度放大倍数跟着频率比增大而减小,当激振频率增大后高阻尼对振动的缓冲作用下降,低阻尼反而得到更好的减振效果。
空气弹簧节流孔设置在18mm-22mm可以得到较好的稳定性和舒适性。在空气弹簧失效工况下,车辆临界速度大幅降低,严重影响车辆的运行稳定性。低速范围内应急橡胶堆的黏着力可以抑制构架的摇头作用,随着速度提高黏着力不足以抑制构架的摇头,导致轮轴横向作用力、轮重减载率、脱轨系数增加,乘坐舒适度恶化,接触面开始出现滑移现象。失效工况应将速度控制在120km/h以下,可以得到空气弹簧失效工况下较安全的动力学性能。
首先采用限元软件ABAQUS建立空气弹簧有限元模型,研究车辆二系悬挂空气弹簧自身的力学性能,得到空气弹簧位移-荷载响应曲线和内部应力云图,根据所得响应曲线数据计算空气弹簧的静刚度、动刚度,研究空气弹簧参数对自身力学性能影响。其次在多体动力学软件UM中建立车体、构架、轮对、一系列减振悬挂系统、二系减振悬挂系统、轨道等部件的动力学模型,研究空气弹簧刚度、阻尼等参数改变对车辆动力学影响。最后本文综合对比分析了空气弹簧不同刚度、不同节流孔直径对于车辆通过曲线动力学性能影响,研究结果表明:
空气弹簧力学性能分析:空气弹簧垂向位移与载荷近似呈正比,垂向刚度随着帘线角度减少而减少,横向刚度随着帘线角度增大而减小。空气弹簧横向刚度随着帘线层数的增多而增大,帘线层数对垂向刚度影响较小。空气弹簧横向刚度随着帘线角度减小而减小,橡胶囊内部压力小于0.15Mpa时横向变形比较明显,当橡胶囊内部压力越高越不容易产生横向形变,但是如果内部压强过大也会导致空气弹簧横向性能变差。
空气弹簧动力学分析:空气弹簧横向刚度对于车辆横向稳定性Sperling指标影响较小,空气弹簧刚度激增会造成车辆横向加速度和横向位移均产生突变,刚度激增对垂向平稳性影响较小,车辆垂向稳定性指标随着空气弹簧垂向刚度的增加而增加。空气弹簧刚度增加导致轮重减载率、蠕滑力增加。车辆通过曲线时增大刚度会让脱轨系数、轮重减载率都增大。空气弹簧频率比?为1时车辆系统产生共振,调节阻尼无作用;当η<√2时,阻尼越小振动越强烈;当η>√2时,阻尼越大振动越强烈,过高的阻尼反而会加剧振动。振动加速度放大倍数跟着频率比增大而减小,当激振频率增大后高阻尼对振动的缓冲作用下降,低阻尼反而得到更好的减振效果。
空气弹簧节流孔设置在18mm-22mm可以得到较好的稳定性和舒适性。在空气弹簧失效工况下,车辆临界速度大幅降低,严重影响车辆的运行稳定性。低速范围内应急橡胶堆的黏着力可以抑制构架的摇头作用,随着速度提高黏着力不足以抑制构架的摇头,导致轮轴横向作用力、轮重减载率、脱轨系数增加,乘坐舒适度恶化,接触面开始出现滑移现象。失效工况应将速度控制在120km/h以下,可以得到空气弹簧失效工况下较安全的动力学性能。