基于LSTM的耀斑指数平滑值的短期预测

来源 :昆明理工大学 | 被引量 : 0次 | 上传用户:yeyeye5122
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
太阳耀斑是一种剧烈的太阳活动形式,强烈太阳耀斑引起的X射线增强会导致短波无线电衰减,从而影响无线电通信系统、全球定位系统、卫星和航天员的安全,造成大量的经济和商业损失。因此,建立太阳耀斑预报模型对空间天气预报具有重要意义。耀斑指数是对全日面耀斑活动强度的一个量化描述指数,是太阳辐射研究领域中最重要的太阳活动指数之一。相较于其他的太阳活动指数序列,耀斑指数时间序列的突发性更强,预测难度更大。耀斑指数平滑值在减缓了这种波动的同时,保留了耀斑指数的整体趋势。可以通过预测耀斑指数平滑值来达到预测未来一周太阳耀斑整体活动水平的目标。本文首先通过R/S分析法计算了耀斑指数与耀斑指数平滑值的Hurst指数值,表明了耀斑指数平滑值的可预测性,同时耀斑指数平滑值的预测性强于耀斑指数,为后续实验提供了基础。之后选取了适合处理时序序列的长短期记忆网络模型(Long Short-Term Memory,LSTM),从耀斑指数中提取时序信息,通过滑动窗口的方式将预测问题转化为机器学习中的监督问题,来预测未来一周的太阳耀斑指数平滑值。针对耀斑指数平滑值的获取要使用到未来的信息这一问题,提出了基于卡尔曼滤波和长短期记忆网络的耀斑指数平滑值预测模型。首先确定了耀斑指数平滑值预测网络模型的最优超参数,从预测结果中分别提取对第一天到第七天的预测结果进行误差分析,通过平均绝对误差等评价指标对模型预测结果进行定量分析,实验结果表明了本文所提出的预测模型在预测耀斑指数平滑值方面的优越性。通过与LSTM神经网络与循环神经网络(Recurrent Neural Network,RNN)进行对比分析,本文所提出的耀斑指数平滑值预测模型精度更高。最后将本文提出的模型与Spring Boot框架结合,建立了耀斑指数平滑值预测系统。
其他文献
无线传感器网络(Wireless Sensor Network,WSN)技术由于其具有超高的实用性,在物联网领域占有举足轻重的地位。无线传感器网络的应用场景通常为条件复杂的外界环境,所以在部署及运行过程中难免会遇到各种问题。在无线传感器网络的应用过程中,网络中存在着一些无法通过卫星定位系统进行位置信息获取的未知节点,在不借助卫星定位系统实现对未知节点的定位能够有效保障网络的运行以及拓展无线传感器网
能量补充问题是无线可充电传感器网络(Wireless Rechargeable Sensor Networks,WRSN)的重要的一个研究课题,借助磁耦合谐振充电技术,可实现单个充电装置同时对充电覆盖范围内的多个传感器节点进行能量补充,还能够实现多跳充电从而有效延申充电距离,提高网络充电效率。本文基于磁耦合谐振充电技术,从单对多和多跳两个角度提出两种可行有效的方案对WRSN进行能量补充,主要研究内
并列结构作为自然语言中的一种常见组成结构,它的正确识别可以很大程度上提高自动句法分析器的性能和效率,也能推进汉语树库的构建工作,同时其识别结果也可直接应用于机器翻译、信息抽取等领域。由于汉语本身复杂多变的特点,并列结构识别成为中文信息处理领域的研究难点。目前的研究中,基于规则的方法需要人工根据具体语言语法和领域来构造规则模板,应用这种方法系统实现代价很高,并且可移植性较差。基于统计的方法虽取得效果
日冕物质抛射(Coronal Mass Ejection,CME)是一种日冕物质从太阳日冕层向行星际空间抛射的强烈空间天气现象。CME严重影响着太空天气和人类生活,所以提高CME的检测效果对预报CME和保障人类的生产生活安全具有重大意义。尽管学者已经探索出了许多CME检测方法,但现有检测方法多采用人为定义特征和人为界定阈值等方法检测CME。由于人为定义特征不能很好表征CME且具有普适性的阈值难于选
图像分割是将图像分割为互不相交、具有独特性质的区域的过程,是计图像场景理解中的关键点,是计算机视觉的基石任务。近年来,随着视觉场景技术的不断深入,图像分割被广泛的应用在医学诊断、自动驾驶、交通系统、增强现实等领域。传统的基于活动轮廓的分割方法可根据图像本身信息演化曲线至目标轮廓上,常用于快速分割具有复杂结构的图像。但是,该方法无法通过学习大量的数据来获取高级特征。随着深度学习的发展,基于全卷积网络
铁磁性材料零部件被广泛地应用于大型机械设备、航天航空、管道运输等领域,铁磁性材料零部件在长期的服役过程中,由于受运行环境、制造工艺和使用方式等因素的影响,易产生表面或内部不同程度的损伤,影响设备运行情况及使用寿命,留下安全隐患,甚至造成工业事故。为此,对设备的铁磁性材料零部件及时地进行非接触、非侵入的检测变得十分重要。为了构建非接触、非侵入的缺陷检测模型,本文利用无损检测技术中的红外热成像技术,建
近年来,随着物联网、微电子技术和无线充电技术的飞速发展,无线传感器网络逐渐在工业应用中发挥重要作用。可以由无线充电器提供能量补充的传感器网络称为无线可充电传感器网络(Wireless Rechargeable Sensor Networks,WRSN),通常它由数量庞多的传感器节点组成,用于监测外界环境、数据传输、边缘计算。传感器节点通常由微电子组件和蓄电池构成,而能量有限的电池是制约WRSN寿命
周期性车辆路径问题(Periodic Vehicle Routing Problem,PVRP)是传统车辆路径问题的一个重要拓展,主要是为了满足客户多次配送服务的要求,优化配送周期内的客户组合和配送路径。目前,环境与能源问题的日益严峻,每个国家对环保的要求越来越严格。因此,考虑燃油消耗和碳排放等因素的绿色周期性车辆路径问题(Green Periodic Vehicle Routing Proble
节点被捕获是无线传感器网络(Wireless Sensor Network,WSN)内部攻击的第一阶段攻击,适宜的检测方法能够更好的保护WSN网络安全。在该论文提出的检测方法中,决策节点通过邻居节点交互信息得到决策,并将得到的决策由多跳路由发送给基站,基站将被认定已捕获的节点进行隔离。对于休眠机制问题,很多检测方法使用的是同步休眠而非异步休眠,甚至有些方法并不考虑休眠的问题;对于通信结构问题,现有
近几年,视网膜图像的血管分割一直是医学领域的研究热点,精确的分割视网膜血管是很多疾病诊断的重要前提,常常被作为诊断视网膜血管病变、糖尿病、高血压、青光眼的重要手段。传统的眼底血管分割是由医生手动完成的,但存在耗时长、过度依赖医生专业性的问题,随着图像处理的快速发展,视网膜自动分割取得了一些进展。然而,眼底血管图像存在数据集少、血管大小尺寸不一和病变背景干扰的问题,加大了图像分割的难度,也导致了视网