论文部分内容阅读
随着经济的发展,环境问题频发,挥发性有机化合物(VOCs)对环境的污染愈发严重。作为制药工业中常见的VOCs之一,甲苯因其特殊的物化性质和“三致作用”,严重威胁动植物的生长和生态环境的绿色发展。在众多VOCs处理手段中,生物降解法因其低能耗、高效、绿色环保的特性,成为人们研究的重点。功能微生物是污染物的直接降解者。因此,筛选高效降解菌是生物降解的核心。本研究以甲苯为唯一碳源对活性污泥进行菌株筛选、鉴定,获得如下研究结果:1.以甲苯(50~1000 mg/L)为唯一碳源对南京某化工公司水厂的活性污泥进行四个周期的梯度驯化,采用“稀释平板法”和“划线分离法”对驯化培养液进行初筛、复筛,得到9株降解甲苯的功能微生物。通过菌株形态学观察和16S r DNA分子鉴定,分别确定菌株125W为粘着剑菌(Ensifer adhaerens)、菌株134W为克雷伯氏菌(Klebsiella sp.)、菌株214W为植生拉乌尔菌(Raoultella planticola)、菌株224R为粘质沙雷氏菌(Serratia marcescens)、菌株316Y为巨大芽孢杆菌(Bacillus megaterium)、菌株326Y为类芽孢杆菌(Paenibacillus sp.)、菌株424W为戴尔福特菌(Delftia sp.)、菌株524W为多食鞘氨醇杆菌(Sphingobacterium multivorum)、菌株536W为恶臭假单胞菌(Pseudomonas putida)。2.在30℃,150 rpm,10%的接菌量,甲苯浓度为236.18 mg/L的条件下,进行菌株降解性能评价实验,评估功能微生物对甲苯的生物降解能力。与其他菌株相比,菌株125W(Ensifer adhaerens MT431909)和536W(Pseudomonas putida MT431910)降解能力更强(p<0.001),24 h去除率分别为99.85%和99.90%。其他7株细菌对甲苯的24 h去除率均在20%左右。采用菌株125W和536W作为本研究的实验菌株。通过查阅文献,尚未发现有关粘着剑菌降解甲苯的研究应用。3.研究发现菌株降解甲苯能力受温度、p H、接菌量、甲苯初始浓度的影响,菌株125W和536W最适降解温度分别为30℃和35℃,最适降解p H范围均为7.0~8.0,最适降解接菌量均为5%,对初始浓度小于577.3 mg/L的甲苯24 h去除率均大于99%。4.菌株125W和536W在终浓度为100 mg/L的10种挥发性有机物选择性培养基中均生长良好,10种挥发性有机物分别为乙醇、苯乙醇、甲苯、甲醇、苯、二甲苯、吐温80、苯酚、二甲基亚砜、2-巯基乙醇。表明两菌株均有良好的挥发性有机物利用广谱性。5.通过超声破碎菌株536W提取菌株粗酶液,并测定粗酶液中的甲苯降解关键酶。分别检测到了甲苯双加氧酶(TDO)和邻苯二酚2,3-双加氧酶(C23O)的酶活。初步推断菌株536W的降解途径是甲苯双加氧酶将甲苯氧化为3-甲基邻苯二酚,然后邻苯二酚2,3-双加氧酶将其间位氧化开环,最终进入三羧酸循环。6.通过“琼脂糖塞实验”研究菌株125W和536W的趋化性。发现两株单菌能够感知生长环境中甲苯和邻苯二酚浓度的变化,并对其产生正趋化性运动,根据底物分布的浓度梯度进行选择性运动。综上,粘着剑菌(E.adhaerens strain 125W)和恶臭假单胞菌(P.putida strain536W)对甲苯均有良好的生物降解能力,并对多种挥发性有机物有较好的广谱利用性。两菌株均能感知生长环境中化学物质的变化,趋利避害,有利于目标污染物的生物利用和生物降解,是较为理想的甲苯降解菌。