【摘 要】
:
本文基于半经典动力学模型,对能量为Me V运动的带电粒子分别与单壁、双壁和三壁碳纳米管的相互作用过程进行模拟。研究了带电粒子分别和单壁、双壁碳纳米管相互作用时产生的尾流效应,以及单壁、双壁和三壁碳纳米管的集体激发效应对入射离子产生自能和阻止本领的影响情况。另外,采用Thomas-Fermi-Moliere的连续势模型描述碳纳米管管壁上的碳原子对带电粒子的排斥作用,通过计算牛顿运动方程得到入射带电粒
论文部分内容阅读
本文基于半经典动力学模型,对能量为Me V运动的带电粒子分别与单壁、双壁和三壁碳纳米管的相互作用过程进行模拟。研究了带电粒子分别和单壁、双壁碳纳米管相互作用时产生的尾流效应,以及单壁、双壁和三壁碳纳米管的集体激发效应对入射离子产生自能和阻止本领的影响情况。另外,采用Thomas-Fermi-Moliere的连续势模型描述碳纳米管管壁上的碳原子对带电粒子的排斥作用,通过计算牛顿运动方程得到入射带电粒子分别在非弯曲和弯曲碳纳米管内的总电势和运动轨迹,并详细讨论了碳纳米管不同弯曲角度对总电势和运动轨迹的影响。通过模拟计算发现,当入射离子速度低于临界值时,感应电荷密度呈现倒扣的钟形分布,大于临界值时在离子后方出现尾流效应。与单壁碳纳米管相比,双壁碳纳米管内壁上的极化电荷容易激发外壁上的价电子,并且外壁的激发程度和入射离子的运动速度有关。另外,由感应电势的三维分布图,发现感应电势在轴向表现出振荡的尾流效应,且在管壁处出现极大值。研究还发现,三壁碳纳米管最外层管对入射离子的自能和阻止本领产生重要影响,使自能和阻止本领在低速区各自出现单峰、双峰结构。最后,通过模拟入射离子和弯曲碳纳米管的相互作用,发现碳纳米管的不同弯曲方向对入射离子电势产生影响,使总电势势阱变深或者变浅,进而影响入射离子的运动轨迹:当入射离子受到的总电势势阱变浅时,由于入射离子受到较大的离心势,推动入射离子远离管壁靠近纳米管中心轴运动,甚至以纳米管中心轴为对称轴上下振荡前进;当总电势势阱变深时,随着碳纳米管弯曲角度的增加入射离子更加靠近管壁运动,使入射离子螺旋状振荡前进的振幅增加。在双壁碳纳米管中,入射离子的初始速度和初始半径对运动轨迹产生重要影响。当碳纳米管正向弯曲时,随着入射速度和入射半径的增大,运动离子沿着碳纳米管的中心轴振荡前进,碳纳米管的聚焦作用明显。以上模拟结果为非弯曲和弯曲碳纳米管在粒子输运、离子束聚焦等领域的实际应用提供了一定理论依据。
其他文献
为了研究低气压下沿面介质阻挡放电的微观机理,本文主要采用了可调谐二极管吸收光谱(TDLAS)和发射光谱(OES)对Ar等离子体、Ar/N2等离子体和Ar/H2O等离子体进行了诊断。分别利用吸收光谱测量了氩亚稳态的数密度和气体温度,利用发射光谱测量了Ar原子电子激发温度,N2分子和OH自由基的转动温度,因为快速碰撞弛豫,转动温度近似等于气体温度[1]。研究了放电电压、放电频率、气体压强、气体流量等放
射频容性耦合等离子体(Radio Frequency Capacitively Coupled Plasmas,RF CCPs)被广泛地应用在刻蚀和薄膜沉积等半导体集成电路制造工艺中。工业中采用的CCP源大多具有几何非对称结构,射频源通过匹配网络与电极板相连。低气压放电中电极有限几何非对称效应会导致等离子体具有很强的非线性,等离子体电流产生高次谐波,两个鞘层的动力学过程不同,会对电子的加热机制产生
等离子体刻蚀技术与薄膜沉积、光刻等工艺结合,通过精细的图形转移在衬底材料上形成微电子器件的微观结构,是半导体制造业中不可或缺的技术。在等离子体刻蚀技术中,离子在鞘层中的输运过程对刻蚀剖面演化起至关重要的作用。具体来说,到达材料表面的离子能量是关键的物理量,因为它驱动表面反应、决定反应速率、影响聚合物的形成以及刻蚀的选择性。为了满足目前原子/分子级别刻蚀剖面精度的要求,精准地将到达材料表面的离子能量
细胞弹性模量与细胞的分化、稳态、衰老、病变等多种生物学功能密切相关,准确测量细胞的弹性模量具有理论研究和临床应用意义。原子力显微镜(AFM)以其超高的灵敏度以及在生理条件下测试的能力,使其在测量细胞弹性模量方面应用最广泛。球形和锥形原子力显微镜探针是两种常用的测量细胞弹性模量的探针,目前通常使用Hertz公式和Sneddon公式对测得的力-位移曲线进行拟合,以获得细胞的弹性模量。但是由于实际压痕实
追肥是保证果树正常生长发育、改善果实品质的主要手段。探讨分次追肥对桃果实品质的影响,能够为合理追肥提供依据。以桃品种‘霞晖8号’和‘霞脆’为试材,在等量追施氮磷钾复合肥条件下,设置一次追肥、二次追肥、三次追肥3个处理,采收成熟期果实,测定品质指标。结果表明:不同追肥次数对2个桃品种的单果重无显著影响。二次追肥条件下, 2个桃品种的去皮硬度、可溶性固形物含量均显著高于一次追肥;山梨醇和总糖含量显著升
大气压等离子体射流由于具有不受放电间隙尺寸的限制,产生活性物种密度高等独特优势,在生物医学、材料处理、环境工程等领域有着十分广泛的应用前景。大气压射流等离子体源是一个多参数系统,放电装置结构、驱动电压类型、工作气体种类、及传播环境等任何一个条件的变化都会影响射流的行为。尽管目前已经对大气压等离子体射流进行了多方面的研究,但为了满足各种复杂的应用需求,探究不同条件下等离子体射流的性质,优化和控制射流
当重复脉冲放电所施加脉冲电压的持续时间为纳秒和亚微秒量级时,将脉冲源的能量最大限度地转移到等离子体负载就会变的尤为困难,提高脉冲源与反应器阻抗匹配度是有效进行能源转换的关键。此外,在良好匹配的情况下,进一步提高放电能量利用率及等离子体化学活性也是至关重要。为此,本文开发了一种磁场辅助直流叠加纳秒脉冲流光放电系统,系统地研究了其放电特性、流光传播行为、活性粒子产生等等离子体物理化学特性,并分析了其作
在经济社会发展过程中,如何巩固脱贫攻坚战所取得的成果,进一步实施乡村振兴战略就成为地区今后发展的重点,也是完善基层农村系统的必由之路。本文结合实际,立足于乡村振兴战略的具体实施情况,对如何巩固脱贫攻坚所取得的成果提出了相应建议。
近年来,作为非热平衡等离子体放电技术,大气压等离子体射流(Atmospheric Pressure Plasma Jets,即APPJs)受到国内外学者的广泛关注。该等离子体打破了传统狭小放电空间的局限,不再像传统的等离子体放电那样依赖真空腔室;放电产生的等离子体接近室温,可用于温度敏感材料的处理;这种放电技术可以使得放电区域与处理区域分离,且具有高稳定性。等离子体射流在生物医学、表面处理等领域具
自从17世纪荷兰物理学家Christianan Huyghens在钟摆实验中发现同步现象以来,经典同步现象受到了人们的广泛关注和研究。同步现象在物理学、生物学、控制科学等领域有着重要的应用价值。另一方面,随着量子力学理论的诞生与发展,人们对微观体系的理解与认识愈加完善。人们发现在量子系统中也存在同步现象,随着研究的不断深入,人们对量子同步现象的认识越来越清晰。目前绝大多数量子同步研究都针对少体系统