大规模Ad Hoc网络智能组网技术的研究与仿真

来源 :北京邮电大学 | 被引量 : 0次 | 上传用户:xiaoyaya310
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
移动自组织(Ad Hoc)网络具有无需基础设施,组网灵活,高抗毁性等特点,广泛应用于民用和军事方面的场景,具有十分广阔的发展前景,获得了国内外教育、研究机构的广泛关注。随着移动Ad Hoc网络组网技术研究的深入以及计算机网络仿真工具的发展,其智能化研究与仿真的实现需求也越来越迫切。所以,设计一个面向移动Ad Hoc组网技术的智能化交互仿真验证系统有着十分重要的意义。本文在结合移动Ad Hoc网络仿真技术研究的基础上,以OMNeT++仿真器软件为工具,在其对移动Ad Hoc网络仿真时的组网分簇可视化功能以及相关网络业务测试触发手段不够丰富的条件下,结合卫星工具包(Satellite/System Tool Kit,STK)作为网络仿真的可视化程序,设计实现了一个专门面向移动Ad Hoc网络仿真数据实时展示和人机交互业务测试需求的仿真系统平台,提升整个网络仿真过程的实时性和交互性,为验证移动Ad Hoc网络仿真研究提供了支持。(1)以OMNeT++网络仿真软件和INET协议仿真框架为基础,研究开发打通仿真网络内部与控制程序之间的接口,完成在仿真运行时,通过Socket实现的数据信息交互。在移动Ad Hoc网络仿真的基础上,研究OMNeT++中基于INET框架的仿真实现,根据仿真器原理为业务测试设计并开发符合场景需求的网络内部消息与数据处理函数,实现仿真时的信息数据收集和交互功能实现。(2)开发基于 C++微软基础类库(Microsoft Foundation Classes,MFC)平台的连接控制软件,并完成与OMNeT++仿真网络和STK可视化软件的连接,构建网络仿真系统平台。连接控制软件通过STK/Connect模块完成应用命令对STK软件的控制,并通过接收OMNeT++仿真数据在STK中完成网络场景的实时展示呈现。同时,连接控制软件实现了包括通信数据收集、节点数据管理和业务指令下发三种功能,为使用者提供了人机交互界面和按键集成,可通过输入的数据完成对STK和OMNeT++仿真网络的控制,触发业务应用命令消息发送到仿真网络中进行实现。(3)通过进行仿真平台系统测试,对已有的Ad Hoc网络中设计的典型业务场景进行联合仿真分析,验证该仿真系统的性能和有效性。通过对不同场景下的网络仿真测试,结果表明该系统相较于普通的网络仿真可实现本文预期的实时展示和数据交互功能,并符合仿真测试时的系统参数需求。
其他文献
随着物联网的不断广泛应用,窄带物联网以其低功耗、覆盖广、低成本的优势日益受到关注。随着物联网中节点数目不断增加,物联网传输系统面对的并发压力愈加严峻,为解决上述问题,本文研究了面向窄带物联网的并发技术,主要工作如下:首先,本文分析了 CoAP协议的传输机制,针对并发请求不断增长引起的网络拥塞问题,研究了物联网的业务数据增长对服务器造成的并发压力。总结了窄带物联网技术、拥塞控制方法和负载均衡方法,为
联邦学习是通过用户节点之间的协作训练,从而得到全局模型的一种新型人工智能技术。在联邦学习中,用户无需上传本地数据,可大大减少了通信成本,并保护用户的隐私。随着边缘设备计算和存储能力的不断提升,大量功能下沉至网络边缘,催生了边缘雾计算。在边缘雾计算中,可以在更接近于数据生成的地方进行模型训练,降低了时延,减少了网络流量并提升了应用效率。将联邦学习部署在边缘雾计算系统中,既可以利用边缘设备的计算和存储
近年来,社会各界对心理问题的重视程度在逐渐提高,心理测评活动也越来越普及。通过对心理测评数据的统计分析,可以从不同视图角度展示心理测评情况。同时利用关联关系挖掘技术可以分析出无法直观得出的蕴含在数据背后的内在关联关系,这种分析得到的数据是十分有价值的。本论文基于心理云平台设计并实现心理测评数据分析系统,为心理云平台提供心理测评数据分析功能。本论文首先对在线心理健康评测数据分析系统的系统需求进行分析
伴随着全国各地志愿服务活动的蓬勃发展,越来越多的个人和团体投身于公益志愿服务领域中来,与此同时也积累了海量的志愿服务大数据。从2008年全国志愿服务信息系统启用开始,截止至2019年2月底已经在全国31个省级行政区中累积了超过1.2亿志愿者、73万志愿团体和232万志愿项目的海量数据。在大数据和人工智能相关技术快速发展的背景下,如何将志愿服务大数据通过机器学习相关算法进行分析挖掘,并且反哺助力志愿
随着科学技术的发展,机器人不仅仅在工业中得到应用,更是走进了人们的生活中,同时也对机器人技术提出了更高的要求。与上世纪的工业机器人有所不同,现在的机器人大多具有一定的智能性,即使在非结构化的环境中,也能够很好地完成各种工作。而物体检测与位姿估计算法是机器人实现自主操作的关键技术,具有重要的研究价值与应用前景。现有多种方法可以解决物体检测与位姿估计的问题,本文采用基于图像特征的方法用于目标物体的检测
区块链技术的快速发展,在全球各个行业中逐渐体现出广泛的影响。自比特币作为区块链技术的载体出现以来,区块链技术得到了广泛的重视,并在诸多领域展开应用。比特币和以太坊是区块链最为成功的应用案例,以太坊用户可以通过发布运行在以太坊虚拟机上的智能合约,从而在以太坊发布信息;而比特币除了完成交易,也可以通过特定字段进行信息的发布与传播,有漏洞的智能合约的发布与不安全信息在链上的传播,造成了用户的财产损失与区
为了应对5G数字通信中对系统吞吐量、传输速率、传输可靠性的进一步需求,自适应调制编码(Adaptive Modulation And Coding,AMC)技术得到了广泛的应用。AMC技术可以根据通信环境的变化及时地调整无线链路传输的调制编码方案,从而保障通信传输质量。同时,随着现代社会迎来了大数据与人工智能时代,通信与AI(Artificial Intelligence)的结合成为新时代通信的重
人们正处于一个大数据的时代,面对海量的信息资源,如何进行快速准确地信息匹配变得尤为重要,而推荐系统在实现信息生产者与消费者之间的利益均衡中扮演了重要角色。推荐系统研究的用户行为数据可分为显式反馈与隐式反馈两类。隐式反馈数据是目前推荐算法的主流训练数据,而矩阵分解算法依然是推荐系统应用最广泛的技术之一。本文对基于隐式反馈的矩阵分解方法的点积缺陷与数据集的不平衡性两方面进行改进,同时结合神经网络技术来
随着5G网络和计算机视觉应用的快速发展,车联网场景中大量视频数据被用于内容分析,以助力安全驾驶。一方面,基于视频内容理解的任务通常伴随着庞大的数据量和巨大的计算能力需求。移动边缘计算(Mobile Edge Computing,MEC)被认为是一种有前景的技术,车辆通过将此类计算密集型应用卸载到移动边缘服务器进行视频内容理解,以解决与车辆有限能力之间的冲突。另一方面,现有基于服务质量(Qualit
随着越来越多的产品和服务围绕着用户的数据建立起来,大数据时代为人们带来了个性化的服务和智能化的生活方式。但是在数据收集、使用以及发布的过程中难免会泄露用户的隐私。作为一种新型的隐私保护方法,差分隐私不仅可以抵抗任意的背景知识攻击,而且能够以严谨且高效的方法来证明其隐私保护水平,是目前隐私保护领域的研究热点。PINQ平台是最早结合差分隐私的数据分析平台,能够为底层数据集提供强大的安全保证。因此本文选