论文部分内容阅读
小麦(Triticum aestivum L.)是世界第二大粮食作物,小麦籽粒作为人类重要的主食之一,是全球超过35%的人类每日所需蛋白质和热量的主要来源。植物组织特异性表达基因和启动子研究一方面有助于预测基因的功能,深入了解植物生长发育过程中基因的表达调控规律,另一方面启动子更是植物基因工程研究的重要工具。但单子叶植物特别是小麦中组织特异性基因和启动子的研究远远落后于其他禾本科作物,比如水稻。本文对小麦组织特异性基因及启动子进行了筛选和分析,利用组织特异性启动子构建了雄性不育系,并尝试利用小麦组织特异性启动子创建小麦无损伤可视化筛选方法;另外还在水稻中分离鉴定了小麦花粉特异性表达基因Ta PSG076的同源基因Os PSG076的启动子,构建了用于Os PSG076基因功能验证的植物表达载体并得到了转基因水稻株系。主要研究结果如下:(1)分析了NCBI公共数据库中小麦胚芽鞘、根、叶、雌蕊、雄蕊、胚、和胚乳七个组织中基因表达的芯片数据,共发现了604个探针代表的基因表现出组织特异性特征。进一步将其中的330个基因进行了小麦染色体定位,发现具有相同组织特异性的基因往往成簇分布在染色体上,并且有些基因的序列被定位在不同的染色体上呈现多拷贝现象。(2)为了验证芯片数据分析结果的可靠性,利用RT-sq PCR和RT-q PCR方法证实了其中36个候选基因表达的组织特异性,实验结果与芯片数据表现出高度一致性。在此基础上,构建了p Col1::GUS,p Root2::GUS和p Leaf1::GUS的植物表达载体,通过农杆菌介导的转化技术,瞬时侵染小麦胚芽鞘,证明Ta Col1启动子可以驱动gus基因在小麦胚芽鞘中瞬时表达。同样采用农杆菌转化技术,获得了p Root2::GUS和p Leaf1::GUS的转基因拟南芥植株。经GUS组织化学检测,证明Ta Root2启动子在拟南芥中表现为根特异性调控模式,而Ta Leaf1启动子在拟南芥叶片中优势表达。(3)利用候选的小麦根特异性启动子Ta Root7和已报道的1Dx5胚乳特异性启动子,分别构建p Root7::Ds Red和1Dx5::Ds Red表达载体,利用基因枪转化,获得了转基因小麦株系,并建立了小麦无损伤可视化筛选方法。(4)利用本实验室克隆鉴定的小麦花粉特异性启动子Ta PSG076构建了Ta PSG076::Barnase(p14B)表达载体,利用基因枪转化,获得了转基因小麦株系,用以创制小麦雄性不育系。(5)基于本实验室分离鉴定的小麦花粉特异性启动子Ta PSG076,分离鉴定了水稻中的同源基因Os PSG076的上游启动子,构建了987 bp该启动子序列的表达载体Os PSG076::GUSplus,利用农杆菌介导的转化技术进行水稻的遗传转化,获得了转基因水稻株系。经过GUS组织化学染色发现,Os PSG076启动子在水稻的花粉中特异表达,且表达强度很高,证实Os PSG076启动子是水稻花粉特异性启动子。(6)构建了Os PSG076基因的过表达(OE)、RNA干扰(RNAi)、基因编辑(CRISPR/Cas9)植物表达载体并获得了水稻转基因株系。综上所述,本文通过高通量分析鉴定了小麦中七个组织的特异性基因,这些结果有助于了解相关未知基因的功能,为小麦组织特异性启动子的挖掘提供了新的资源。对其中三个启动子进行了功能验证,并进行了小麦组织特异性启动子的应用研究。此外,还分离鉴定了一个水稻花粉特异性基因启动子Os PSG076,并获得了可对Os PSG076基因进行功能验证的水稻转基因材料。这些结果证实了本文中组织特异性启动子筛选方法的可行性,及组织特异性启动子的潜在应用价值。