基于不同工质有机朗肯循环全工况运行实验研究及神经网络性能优化

来源 :江苏大学 | 被引量 : 0次 | 上传用户:prcjzzz
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为应对能源供需矛盾和全球气候环境变化等挑战,世界各国逐渐重视发展中低温余热回收技术,以改善化石能源的利用率,解决日益加剧的能源与环境问题。有机朗肯循环(Organic Rankine cycle,ORC)温度适用范围广、功率适中,是被广泛应用的一种低品位热能转换利用技术。针对有机朗肯循环效率低和成本高的问题,本文开展基于不同工质有机朗肯循环全工况运行实验研究及神经网络性能优化。主要研究内容和创新性结论如下:1)基于ORC实验平台,开展各组件基本运行特性和循环性能的研究,获得各组件运行的交互影响机制。研究发现,循环柱塞泵的等熵效率与机械效率最大分别为47.3%和85.2%,涡卷膨胀机等熵效率可达86%。系统热输入从22-44 k W变化时,系统压力差最大为7.93 bar,发电量最大为1.24 k W,系统的热效率和净输出功最大分别为6.4%和1.64 k W。2)基于神经网络构建ORC预测模型,开展ORC性能预测和优化研究。依据循环瞬态实验数据,建立BP-ORC模型,分析该模型的精度,考察基本运行参数对循环性能的影响规律,并以循环净输出功最大、热效率最高为优化目标,获得最优的运行参数,揭示热效率和净输出功的相互约束关系。研究发现,提高热效率可通过增加泵出口压力和膨胀机入口温度,或减少膨胀机出口温度来实现,增大净输出功可通过增加质量流量或匹配膨胀机入口和出口温度来实现。循环最佳热效率和净输出功分别为7.76%和2.31 k W。3)混合工质在发生相变时的温度滑移特性,可降低传热温差导致的不可逆损失,从而提升循环与冷热源的匹配。实验探索混合工质组分配比对循环各组件运行特性、换热性能及整体性能的影响规律,并着重探究换热器压差对循环特性的影响。研究发现,使用R245fa的蒸发器换热系数最高,其次是R245fa/R123混合物,R123最低。而使用R123的冷凝器换热系数最高,R245fa/R123=1:1最低。混合工质的热效率略高于纯工质。换热器压降对循环热效率影响很大,不考虑压降的模拟热效率比实际热效率最大高286.76%。因此,在理论分析中应重视换热器压降的影响。4)基于纳米流体换热特性测试平台,开展纳米有机工质的流动传热特性的研究。制备ZnO纳米有机工质,研究其物相、形貌和物性,获得透光率、粘性和导热性能的变化规律,开展不同工质流量下的纳米有机工质与纯工质的换热特性的对比研究。实验结果表明,制备的ZnO-R123纳米流体稳定性较好,纳米颗粒ZnO的加入使得系统的粘性、导热系数、换热系数与压降明显提升。
其他文献
马铃薯是一种常见的农作物,除玉米、水稻、小麦以外,马铃薯是食用最为广泛的主粮,在当今世界具有重要的地位并且有逐渐上升的趋势。马铃薯全粉是传统的马铃薯主粮化产品之一,对其关键环节的技术瓶颈进行突破与革新是我国薯类主食化研究的一个重点方向。本课题以去皮后制粉前的马铃薯为对象,进一步清除残余表皮、机械损伤、黑斑等一系列缺陷,以达到提高最终产品质量的目的。课题将结合机器视觉和激光加工技术对去皮马铃薯的残余
纳米流体分频型光伏光热(PV/T)系统是有效利用太阳能的方式之一,但目前该研究仍面临着纳米分频液与光伏电池匹配度差、在聚光下难以长期稳定工作等难题。研究表明Ag@SiO2核壳纳米颗粒因其稳定的性质和对太阳光短波波段有显著的吸收而在PV/T系统应用中有广阔的前景。但Ag@SiO2核壳纳米颗粒的制备方法普遍较为复杂,且化学法制备的Ag@SiO2核壳纳米颗粒往往有形貌模糊、尺寸不均、分散不好等缺点,因此
一直以来,贴现率的取值都是气候变化经济学中极为重要的问题之一,贴现率的相关研究直接影响着气候政策的制定,从而影响人类子孙后代的生存。随着“植树造林”、“节能减排”等气候政策的实施,为追求碳达峰、碳中和的目标,我国倡导全社会减排,绿色低碳行为已成为发展潮流。人类主动自觉自律践行绿色行为的意识普遍增强,消费观亦发生改变,绿色行为下的消费逐步成为普遍形态。因此在贴现率模型中,本文考虑了三种形态的消费商品
目的:1.回顾性分析临床左、右半结肠癌患者临床特征信息与中医遣方用药的规律及差异。2.基于聚类算法及关联规则算法,挖掘临床左、右半结肠癌临床诊疗中中医方剂的核心方药组合和方药规则。3.以网络药理学分析方法为支撑,分析左、右半结肠癌治疗所用的典型方药防治左、右半结肠癌的潜在作用机制。方法:第一部分:1.回顾性分析我院临床诊疗中左、右半结肠癌患者的临床特征信息及中医遣方用药规律差异:参考国际抗癌联盟(
现代农业正朝着多元化方向发展,其中智能拖拉机正成为研究热点。智能拖拉机自主行走系统主要由三个子系统构成,分别是环境感知系统、决策控制系统和执行机构系统。本论文结合江苏省重点研发计划(现代农业)重点项目:园艺电动拖拉机研发(BE2017333),对园艺电动拖拉机自主行走系统进行研究,主要工作如下:(1)根据园艺电动拖拉机自主行走系统的需求,在原有拖拉机的基础上,分别从环境感知、决策控制和执行机构三个
钠离子电池(SIB)由于钠资源丰富、安全性好和成本低等而成为二次电池领域的研究热点之一。磷酸钒钠(Na3V2(PO4)3)由于其较高的理论比容量、高的工作电压、良好的结构稳定性和高的钠离子电导率,而成为钠离子电池正极材料的主要选择之一。然而,Na3V2(PO4)3的本征电子电导率较低,因而其电化学性能还有待于改进。碳包覆被证实是一种有效提升Na3V2(PO4)3储钠性能的方法。然而,当前制备Na3
由于能源安全和环境污染问题的凸显,新能源汽车产业在节约能源和促进新能源研究等方面发挥重要作用,因而其发展战略是我国乃至全球的战略机遇。不管新能源汽车采取哪种具体形式,电机及驱动控制系统在整车系统中都是关键技术。永磁轮毂电机(Permanent Magnet Synchronous Hub Motor,PMSHM)是运用分布式驱动方式而直接安装在轮毂处的永磁同步电机。采用此种分布式驱动能够减少包括减
当前利用固态电解质代替液态电解质已成为锂离子电池兼顾高能量密度和高安全性的最有效方法。然而固态电解质室温离子电导率低、界面阻抗大、电化学稳定性差以及原料成本高一直是限制其应用的主要问题。本文针对上述问题,将原料来源广泛、化学稳定性良好的Al2O3纳米棒与聚碳酸丙烯酯(PPC)复合,形成室温下具有高离子电导率和高电化学稳定的有机/无机复合固态电解质薄膜,并通过石墨涂层改性进一步改善电极/电解质的界面
在严峻的能源和环境问题要求下,内燃机不断向高功率、轻量化方向发展,导致燃烧室等部件的热负荷问题急剧增加,对冷却水腔换热能力的进一步提高亟待解决。传统的对流换热方式开始难以满足日益严格的换热需求,以沸腾传热为代表的相变冷却模式引起了国内外研究学者的高度关注。表面改性作为一种新型强化传热方式,不仅能够增大换热表面的比表面积,还能够改变气泡演化行为,研究其对沸腾换热的影响对提高内燃机冷却水腔的换热能力具
内燃机作为传统的动力装置,对国民经济发展起着重要支撑,面对日益严苛的排放法规以及碳达峰碳中和发展目标,实现内燃机全生命周期的超低排放成为内燃机技术发展的主要目标,新型燃烧技术耦合清洁可再生替代燃料成为解决上述难题有效技术途径之一。戊醇因其含氧、可再生、易挥发,极性较小,能与柴油、生物柴油稳定互溶等特点,是一种理想的可再生替代燃料。但其汽化潜热较高,发动机冷启动性能差,十六烷值较低,着火性能差,需要