论文部分内容阅读
焊接制造广泛地应用于飞机、船舶、桥梁和列车等领域中,精确快速地预测大型焊接结构的应力和变形是实现高精高效焊接制造的关键。长期以来,现有大型焊接结构应力和变形预测的主流算法一直面临着精度与效率难以兼顾的国际难题:热-弹-塑性算法精度高,但计算效率很低;固有应变算法效率高,但精度低,且难以适用于复杂结构。针对这一国际难题,本文创建了基于塑性应变映射的复杂结构焊接变形仿真技术路线,系统解决了精确塑性应变求解、映射误差控制、焊接顺序数学建模、夹具与加持力精确仿真等关键理论与技术难题;区别于国际上主流的焊接结构变形算法,研发出了具有完全自主产权的商品化仿真软件,使得在普通PC机上求解千万实体有限单元量级的大型复杂厚板类结构焊接变形问题成为可能。主要内容如下:1)基于准稳态熔池和能量守恒原则,推导了CFD(计算流体力学)-FEM(有限元方法)热源模型,实现了基于物理过程、无需热源校核的高能束焊接焊缝形貌预测;基于顺序耦合推导了热-弹-塑性算法的有限元求解格式,建立了内外嵌套NewtonRaphson迭代的非线性求解策略,降低了有限元计算中一阶四面体单元的数值振荡。以钛合金电子束焊接为例,采用新型热源模型,仿真与实测的熔深熔宽误差在5%以内,并且首次反映了小孔振荡导致的应力振荡,为塑性应变预测提供了准确的计算模型。2)首次从理论上证明塑性应变映射过程中的误差来源,提出了基于塑性应变载荷和载荷力矩双守恒的误差控制准则,创建并实现了基于塑性应变映射的大型结构焊接变形快速求解算法。以热-弹-塑性算法为标准,该算法的变形误差控制在10%以内;与固有应变算法相比,该算法保持了相同的求解效率,并且可以适用于更为复杂的焊接结构。3)通过构造基于焊缝-母材模型的单元激活算法,提出了基于结构实时刚度的焊接顺序精确建模方法;推导了固定边界及边界力求解格式,建立了考虑焊接顺序以及工装夹具的变形算法。以典型船体结构焊接变形为例,验证算法的有效性和准确性,与文献报道的传统壳单元算法相比,本算法与实测值更为吻合,并更具有普适性。4)基于CAE(计算机辅助工程)设计思想和C++开发平台,设计和研发了具有全部自主知识产权的焊接结构有限元分析软件INTEWELD。通过复杂结构来验证分析软件的有效性,以某飞行器中跨度约为1 m的激光焊接结构为例,结果表明仿真变形结果与实测趋势完全一致,最大误差为0.3 mm;以大型导流管焊接结构为例,在普通工作站上实现了在1个小时内对千万级别有限元网格的单次整体变形求解,仿真变形与实测值的误差在10%以内;通过软件实现了对不同焊接工序的变形预测,为工艺优化提供了数字化仿真分析工具。