冲击荷载下纤维复合材料柔性防护体系动力性能分析与试验研究

来源 :兰州理工大学 | 被引量 : 0次 | 上传用户:a717878213a
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于我国地形地貌复杂,气候多变,因此泥石流成为了主要自然灾害之一。关于泥石流的防治措施方面,柔性防护体系因其自身具备良好的耗能性能而被广泛应用于实际工程。纵观我国的柔性防护体系研究历程,普遍采用的是钢丝绳网,而有关其余防护材料的研究甚少。本文基于国内外柔性防护体系的研究现状,在继承传统被动柔性防护形式的基础上,引入了一种以纤维复合材料为主,辅以固定系统组成的新式柔性防护体系。本文的防护网形状以矩形为主,纤维复合材料因其柔性,便于施工操作,防护网采用的矩形又可连接成多跨体系,适应多种地形。本文通过ANSYS/LS-DYNA有限元分析软件和冲击试验相结合的研究方法,对纤维复合材料柔性防护体系的基本构成单元“防护网”进行了冲击荷载下的动力响应分析,主要研究的内容包括以下几个方面:(1)了解了国内外泥石流防治工程的研究现状,在继承前人的研究成果基础上确定了自己的课题方向。同时,推导与整理了冲击动力学中的动力平衡方程、能量与冲击力计算公式、ANSYS/LS-DYNA有限元分析软件的主要设置以及绳索动力学中有关柔性体的运动方程。(2)通过对4组纤维复合材料试件的单轴拉伸试验,研究了不同纤维复合材料的基本力学性能,对比了材料之间的性能差别。结果表明:拉伸强度由大到小依次为碳纤维、芳纶纤维、玻璃纤维;而碳/芳混编复合材料的拉伸结果表现为负混杂效应。(3)从边界条件、体系长宽比、材料类别以及结构形式等角度出发,利用ANSYS/LS-DYNA有限元软件对模型的冲击力、能量、位移、加速度等进行分析。主要结论为:减少约束条件、适当扩大长宽比与网格间距有利于柔性防护网的耗能性能优化;高弹性模量材料的冲击力峰值更大,冲击物与结构接触的时间加快;冲击十字结构、3×3体系以及5×5体系,冲击力到达峰值的速度、能量转化的时间均变快,而位移峰值逐渐减小。(4)基于有限元模拟的结果,选取部分数值模拟工况作为试验方案进行冲击试验,试验中记录模型关键点的应变、位移和加速度数据,并与对应的数值模拟结果进行对比。结果表明:应力波的路径越长,结构的应变峰值和加速度响应逐渐减弱;增大冲击物质量,玻璃纤维复合材料的位移峰值最大;对比了两种节点连接方式,卡扣连接会影响构件的动态响应值,而绳结方式能加强结构整体性,弱化前者的缺点。
其他文献
铜基石墨自润滑复合材料因其具有优异的抗磨损、耐腐蚀、耐高温等特性,作为机械装备运动零部件用材料具有广泛的应用前景和价值。然而,由于两相原子结构、原子键结合类型和化学组成差异较大,热膨胀系数不匹配,采用传统粉末冶金方法制备的铜基石墨自润滑复合材料界面可靠性差,严重制约了其在机械运动部件中的实际应用。本论文基于三维连续网络结构设计理念,在探明结构参数对自润滑复合材料整体性能和界面性能影响规律的基础上,
类石墨烯材料由于具有大的比表面积、丰富的可接触活性位点以及快速的层间离子扩散通道等优点而被广泛用作电化学储能器件的电极材料。但是,类石墨烯材料也存在层状结构易于堆叠、离子嵌入/脱出过程体积膨胀明显以及由于层间较大范德华力导致的离子扩散速率缓慢等缺点。这些缺点严重限制了类石墨烯材料的倍率性能和循环稳定性,是目前亟待解决的问题。本论文研究工作从结构决定性能的角度出发,设计了不同的层间距调控技术来调节类
传统铸造工艺的铸型制作一般需要模样或者模具,生产周期长,成本高,难以满足未来市场对单件或者小批量铸件个性化、多样化、柔性制造的需求。增材制造工艺采用离散-堆积成形原理,具有柔性高、周期短的特点,基于增材制造技术开发新型的铸型制造技术成为近年来的研究热点。SLS(Selective Laser Sintering)、SLA(Stereolithography)、3DP(Three Diamensio
频率选择表面(Frequency Selective Surface,FSS),做为一种由谐振单元按周期性排列的方式组成的二维或三维结构,随着制造工艺的发展和计算机运算能力的提高,在航空航天、雷达以及卫星通讯等领域大放异彩,拥有巨大的应用价值。自上世纪60年代以来,不论是军事技术领域还是民用科技中都有它广泛的用途。随着专家学者们对频率选择表面研究的不断深入以及多种微波EDA软件的开发,影响FSS工
铜基自润滑复合材料即具备铜合金优良的导电导热性、耐腐蚀性和高强度高硬度,又具备固体润滑剂良好的耐磨减摩性能,使其可广泛应用于导电弓滑板、电刷、轴端接地装置和发电机集电环等方面。本研究以球磨混合法制备的Cu-Cr-Zr复合粉末为基体,采用Nb粉、铜包石墨粉、MoS2为增强体,使用直热法粉末烧结技术制备了不同Nb含量(0 wt.%、0.05 wt.%、0.15 wt.%、0.25 wt.%)的Cu-C
C/C复合材料是由碳纤维与碳基体所组成的新型复合材料。C/C复合材料具有高温强度高、耐腐蚀、热膨胀系数小、耐烧蚀及生物相容性好等优点,被广泛应用于航空航天、军事、核能源和生物医学等领域。到目前为止,国内外学者研究出了众多制备C/C复合材料的方法,如化学气相渗透法(CVI)、液相浸渍法、等温化学气相渗透法(ICVI)、热梯度化学气相渗透法(TG-CVI)、强制流动化学气相渗透法(FCVI)、脉冲化学
C/C复合材料因其高比强度、高比模量,以及良好的高温性能等,被广泛应用于航空航天、医学、军事等科技前沿领域。制备C/C复合材料的主要方法为ICVI法和液相浸渍碳化技术两种。其中ICVI法制备C/C复合材料容易“表面结壳”,一个材料制备周期内需反复机加工,制备周期长,成本高;液相浸渍碳化技术需利用高压将树脂压入预制体内部,对设备要求较高,且所沉积的碳为“玻璃碳”,石墨化程度低,材料性能较差。为解决制
为了解决能源匮乏和环境污染等问题,推广电解水制氢技术至关重要。但目前电解水制氢受到电极极化大,反应动力学慢的制约,使其制备氢气的能耗高,转化效率低。电极材料在电催化过程中,是电子传递的介质和催化反应发生的场所,开发高效且廉价的阴极电极材料,以降低析氢过电位势在必行。本论文旨在通过介孔引入、结构控制、表面改性等调控方法,对镍钴基硫化物及其复合电极材料进行有效的改性,以期望获得更高效的析氢电极界面。本
铝基复合材料因其独特的性能一直受到材料学界关注,在航空航天和其它制造业领域被广泛应用。针对铝基复合材料增强体与界面润湿性差、耐磨性能弱等问题,本文通过金属间化合物核壳结构的增强设计,利用粉末冶金方法制备了铝基复合材料,研究了核壳组织结构的制备工艺、核壳组织结构对复合材料力学性能的影响规律,研究了铝基复合材料在干摩擦和海水环境中的摩擦学行为规律,揭示了铝基复合材料的磨损机制。本文取得的主要结果和结论
块体非晶合金在室温下的灾难性脆变成为其作为结构材料得到工程应用的“阿喀琉斯之踵”。究其原因在于局部剪切带的快速扩展。研究发现,通过引入亚稳第二相,在变形过程中会发生马氏体相变,可以增进材料的韧性,从而弥补非晶基体在塑性变形中的应变软化,使得材料加工硬化能力提高。然而,这种“相变诱导塑性”韧塑化块体非晶复合材料第二相组织形貌不易调控,这个问题在Ti基非晶合金体系中尤为突出,亚稳第二相分布不弥散,晶体