论文部分内容阅读
环糊精水解酶(Cyclodextrinase,CDase)是糖苷水解酶家族13(GH13)中第20亚家族(GH13_20,又称为新普鲁兰酶亚家族)中的一员,通常可以作用环糊精(Cyclodextrin,CD)、淀粉和普鲁兰多糖等底物。其中,对CD的水解速率高于其他底物。麦芽低聚糖通常是2~10个葡萄糖单元由α-1,4糖苷键连接的直链低聚糖,具有良好的加工适应性和功能营养特性。CDase由于其能打开CD环骨架生成特定聚合度的麦芽低聚糖而被认为具有良好的应用潜力。目前,报道的CD水解专一性强的CDase较少,制备所得麦芽低聚糖纯度不高。此外,对CDase的底物作用机制尚不清晰并且对该酶作用的产物组成及其性质探讨有限,这也进一步限制了该酶在食品中的应用。本课题主要筛选了具有高度CD水解专一性的CDase,解析了其作用CD的机制并对该酶在低聚糖制备中的应用进行了探究。进一步,基于CDase的CD水解特异性,通过将CDase与以淀粉为底物制备CD的环糊精葡萄糖基转移酶(Cyclodextrin glycosyltransferase,CGTase)联合使用,探究了CDase在改性淀粉中的应用。主要的研究内容和结果如下:1.以现有报道的CDase序列为模板,通过基本的生物信息学分析从Genbank中筛选了两条蛋白序列,分别来源于嗜热古生菌Palaeococcus ferrophilus和Palaeococcus pacificus,并将其命名为AMPf和PpCD。经多序列比对分析,AMPf和PpCD均具有新普兰酶亚家族的7个保守区域,包括该亚家族的特征序列“375MPRLN403”(以AMPf计)。对AMPf和PpCD进行表达、纯化和基本酶学性质测定,其中AMPf分子量约为70 k Da,最适温度为50℃,最适pH为7.0,且在45℃下保温8 h仍保持60%以上的酶活性。PpCD分子量约为80 k Da,最适温度为95℃,最适pH为6.0,在75℃及85℃下保温8h仍保持90%以上的酶活性。此外,AMPf和PpCD酶活力均会受到部分金属离子和有机溶剂的影响。2.使用CD、淀粉、普鲁兰多糖以及麦芽低聚糖等底物对AMPf和PpCD的底物特异性和产物特异性进行鉴定。发现AMPf对淀粉具有高度的水解活性,而PpCD则是对CD具有高度的水解特异性。AMPf具有明显的转糖基活力,可利用麦芽糖和麦芽三糖作为底物生成麦芽四糖及更高聚合度的寡糖,而PpCD无明显的转糖基活力。此外,经高效液相色谱(HPLC)测定,AMPf水解淀粉的产物主要组成为葡萄糖、麦芽糖、麦芽三糖和麦芽四糖,而PpCD可以将α-CD、β-CD和γ-CD分别水解成其对应的直链麦芽低聚糖,即麦芽六糖、麦芽七糖和麦芽八糖。3.选择耐热性高且对CD具有高度水解特异性的PpCD进行后续研究。利用HPLC测定PpCD以不同CD为底物反应不同时间的产物,探究其水解模式。结果表明,PpCD对α-CD、β-CD和γ-CD具有相似的水解模式。首先,PpCD将CD迅速水解成其对应的直链麦芽低聚糖。其次,麦芽低聚糖被缓慢降解为聚合度更小的低聚糖。最终,PpCD将所有产物降解为葡萄糖和麦芽糖。利用PpCD以β-CD为底物制备麦芽七糖,当以8%的β-CD为底物,反应时间为100 min时,反应产物中麦芽七糖占麦芽低聚糖的比例可达98.4%;当反应时间为180 min时,反应产物中麦芽七糖占总反应产物的比例可达43.4%。此外,通过分子模拟发现PpCD的特异性CD识别作用可能与活性中心周围的芳香氨基酸有关。4.为了探究PpCD在复合环糊精体系的水解规律,首先分别测定了PpCD以α-CD、β-CD和γ-CD为底物的动力学参数,所得对三种CD的催化效率kcat/Km依次为18.46、6.03和0.93 mg·m L-1·min-1。这表明,PpCD对α-CD、β-CD和γ-CD具有显著不同的催化效率。进一步,配制了含不同比例CD的混合底物,加入PpCD对其进行水解,发现PpCD具有明显的选择性降解效果,且对α-CD和γ-CD混合体系的选择性水解效果最为显著。当混合体系中α-CD和β-CD被降解完全时,γ-CD也会有20%~50%的损失。此外,温度优化实验表明,85℃条件下PpCD具有最佳的选择性水解效果。最后,利用γ-CGTase作用淀粉的产物作为底物,经PpCD作用后表明其在该体系中同样可以发挥良好的选择性降解效果。5.将PpCD和以CD为产物的CGTase共同作用淀粉,分别反应1、6、12和24 h。结果表明,PpCD提升了CGTase反应过程中还原末端和葡萄糖的释放,促进了CGTase对淀粉的酶解效率。利用HPLC对反应过程中环状和直链麦芽低聚糖的组成测定发现,PpCD减少了CGTase反应过程中的CD含量而显著提升了麦芽低聚糖的含量。对反应过程中产物分子结构测定发现,经PpCD和CGTase单独酶解1 h的样品的重均分子量(Mw)分别为222.6×105 g/mol和36.7×105 g/mol。然而,经PpCD和CGTase双酶酶解的Mw为15.0×105 g/mol,表明PpCD具有促进降解作用。随着反应时间的延长,降解效果更为显著。因此,PpCD与CGTase之间具有明显的协同作用效果。此外,PpCD和CGTase协同作用淀粉显著提升了淀粉的抗回生性质,淀粉在4℃储存7天的回生焓值可由5.65 J/g下降为1.42 J/g。基于PpCD和CGTase的协同作用效果,选择了PpCD和CGTase同时处理和顺序处理的不同作用方式,对具有不同直链淀粉含量的蜡质(5%)、普通(25%)和高直链(45%)玉米淀粉进行处理,并对产物的组成和体外消化性质进行测定。当以普通玉米淀粉为底物时可获得最高的环状和直链麦芽低聚糖转化率,可达45.7%。对改性淀粉精细结构表征发现,CGTase和双酶处理使得不同玉米淀粉DP 13~24,DP 25~36和DP>37的链长比例显著下降,而DP<13的链长比例显著提升,测定的表观提升比例为50%~60%。CGTase及双酶处理显著提升了不同玉米淀粉的抗消化性质,其中,测定的抗性淀粉(RS)的提升最为显著。当底物分别为蜡质、普通和高直链玉米淀粉时,RS分别最高可达36.9%、40.0%和59.3%。当PpCD将CGTase产物体系中的CD转化为麦芽低聚糖时,产物的消化性无显著变化。