论文部分内容阅读
天然气水合物是21世纪最值得关注的新能源,其储量丰富,使用清洁,对于缓解我国未来能源危机有着重要作用。气体水合物的生成和分解动力学是安全开发及高效利用天然气水合物的重要理论基础,但传统的宏观动力学实验结果仍不能有效的分析气体水合物生成及分解过程的微观机理,因此,本文基于分子动力学模拟手段,研究甲烷水合物的生成、分解及CO2置换过程,从分子层面深入揭示水合物的生成、分解及置换机理。主要研究内容包括以下三个方面:(1)甲烷水合物的生成动力学模拟。这部分模拟采用开源动力学软件GROMACS进行,水分子采用 TIP4P(Transferable Intermolecular Potential 4 Points)模型,甲烷采用OPLS-aa(Optimized Potentials for Liquid Simulations-all atom)模型,NaCl 用 Smith 开发的力场参数。首先模拟了纯水和NaCl溶液中甲烷水合物的生成过程,获得了稳定的甲烷水合物结构,验证了 Sloan的成簇成核模型;在含有水合物晶体的甲烷水溶液中,生长速度大约为0.56A/ns,最终得到12个完整的晶核结构,而3.4wt%NaCl溶液中,由于Cl-的静电吸引作用及Na+的水化作用,影响水分子分布规律,同时导致盐析效应,因此水合物的生长速度大约为0.36A/ns,最终得到9个晶核且含有缺陷;水合物的生长对温度十分敏感,对压力不敏感,温度引起水分子扩散系数的变化更大;研究了甲烷浓度(摩尔比为:0.098、0.11、0.127、0.138)对水合物生长的影响,发现高浓度会限制水合物的初始生长速度,但生长后期会促进水合物的形成,在摩尔比为0.138的体系中水合物的生长速度为0.75A/ns;在甲烷水合物生成过程中,影响作用最大的是水溶液中甲烷的浓度,其次是温度,最后是压力。(2)甲烷水合物的分解动力学模拟。这部分内容采用分子动力学软件Material Studio 中的 Forcite 模块进行模拟,选择 CVFF(Consistent Valence Force Field)力场,正则系综 NVT(Canonical Ensemble),水分子选择 SPC(Simple Point Charge)模型。通过甲烷水合物的分解模拟,验证了 Kim的分解模型;高温使氢键剧烈振动,同时高温有利于打破液膜结构,缩短反应停滞时间,常压下甲烷水合物的分解速率随温度(278K,283K,288K,293K)的上升而增加,293K下水溶液分解水合物的速度为0.066A/ps;通过研究NaCl溶液浓度(2.5wt%,5wt%,10wt%,20wt%)对分解过程的影响,发现高浓度的NaCl溶液可以促进其分解,但浓度过高,因离子的水化作用及甲烷的疏水作用,分解速率反而会降低,1 0wt%的NaCl溶液分解速度最快,为0.067A/ps;对于不同类型的盐溶液,Ca2+对笼形结构的破坏力较强,5wt%的CaCl2溶液分解速度为0.062A/ps,吸收的能量为 1360.558kCal/mol,5wt%的 NaCl 分解速度为 0.053A/ps,虽分解速率适中,但吸收能量较少,也可作为水合物分解溶液;不同类型盐溶液分解甲烷水合物的能力由强到弱依次为:CaCl2>LiCl>KCl>MgCl2>AlCl3>NaCl。(3)CO2置换甲烷水合物的分子动力学模拟。这部分模拟采用开源动力学软件GROMACS 进行,CO2采用 EPM2(a Simple Site-Based Intermolecular Potential Model)力场模型,CH4、水分子以及盐离子的力场模型与生成部分相同。通过CO2置换甲烷水合物的动力学模拟,验证了 Ota置换模型;CO2置换甲烷水合物是由界面处向水合物内部进行的,但形成的CO2水合物层会阻碍置换过程的进行;20MPa,温度(260K,270K,280K)越高越有利于置换进行,260K时CO2会在甲烷水合物提供晶核的基础上形成新的水合物;280K时压力(5MPa,1OMPa,20MPa)越高,甲烷水合物越稳定,CO2形成新的水合物趋势越强;CO2浓度(摩尔比为:0.098,0.12,0.126)越高,甲烷置换率越大;在相当于深海海水盐度的3.2wt%NaCl溶液中置换依然能够进行,且甲烷逸出速度增加;模拟发现整个置换过程速率及置换率的控制环节是溶液中客体分子浓度及新形成的CO2水合物层,如何使CO2持续穿过固体层置换出CH4是将来研究的重点。本文的研究结果将为分析水合物生成及分解的微观机理提供一定的参考,为天然气水合物的开发及运输奠定基础。