【摘 要】
:
光和原子相互作用是量子光学的主要研究内容。其常用的研究方法包括仅把原子量子化的半经典理论,以及把光场和原子都量子化的全量子理论。光和原子的相互作用表现出很多独特的量子现象,如拉比震荡、相干布居俘获、慢光和里德堡阻塞等。本文研究光场和原子相互作用的过程,我们不仅关注光场的变化,也关注原子的行为。全文主要分为两个部分:一是光场的相干调控及其应用,二是这一过程中由单原子构成的自给式热机。光的相干调控是指
论文部分内容阅读
光和原子相互作用是量子光学的主要研究内容。其常用的研究方法包括仅把原子量子化的半经典理论,以及把光场和原子都量子化的全量子理论。光和原子的相互作用表现出很多独特的量子现象,如拉比震荡、相干布居俘获、慢光和里德堡阻塞等。本文研究光场和原子相互作用的过程,我们不仅关注光场的变化,也关注原子的行为。全文主要分为两个部分:一是光场的相干调控及其应用,二是这一过程中由单原子构成的自给式热机。光的相干调控是指利用原子(或者人造原子)为媒介,通过光与原子的相互作用,实现对光场各种属性的调制的一种方法。在研究量子计算机和量子通信的过程中,光子作为量子信息的理想载体,受到了广泛的关注。与电子不同,光子之间没有直接的相互作用。想要实现对光的相干控制,必须依靠原子作为媒介。另外,原子在光子的产生、储存等方面还起着重要作用。自给式热机是一种特殊的量子热机,它能够在没有任何外部能源的情况下,只是通过与不同温度下的热库热接触,就实现制冷机和热机等功能。具体来说,本论文取得以下结果:1、采用电磁感应透明的原理,在宇称破缺的三能级原子与三个经典光场相干耦合的系统中,我们研究了 △型三能级人造原子对两个弱场的极化响应,并提出了一种交叉相位调制方案。△型三能级原子特有的循环跃迁结构,使得三个光场的相对相位对原子的极化有明显的影响,调节相对相位可以灵敏地改变弱场的吸收和色散。在我们的方案中,探测场可以无吸收的透明传播。借助于多光场的相对相位,我们实现了在增大辅助场对探测场的交叉相位调制的同时,遏制探测场自相位调制。除此之外,探测场和辅助场在介质中传播的色散曲线基本保持一致,这表明它们拥有着相似的群速度。2、提出了一种更完善的全光开关方案。在我们的方案中,通过简单的打开或者关闭弱辅助场,控制循环跃迁结构的闭合或者被破坏,就能够使探测场处于透明传播状态或者被吸收状态。然后,我们通过求解系统的稳态解析解,解释了这一现象:当打开辅助场后,闭合的循环跃迁结构使得非线性效应大大增强,足以抵消掉线性效应带来的吸收。我们还对本方案与电磁感应透明方案进行了对比。3、给出了一种新型自给式量子热机的理论方案。在该方案中,我们实现了对目标量子比特的冷却,并讨论了热机和目标量子比特之间耦合强度对制冷效果和制冷效率的影响。我们发现,强耦合有助于把目标量子比特更快的冷却到更低的温度。但耦合强度对临界温度没有显著影响。需要指出的是,我们的方案可以在不更换热机的前提下,用于冷却任意频率的目标量子比特。
其他文献
PHF6(Plant Homeodomain Finger Protein 6)的发现源于对“伯-福-莱”三氏综合症(BFLS)的研究,其中PHF6的突变是引起BFLS疾病的原因。之后的研究发现有些BFLS病人同时患上了T细胞白血病,并且在非BFLS白血病患者中也发现了PHF6的基因突变,这些研究表明PHF6基因的突变可能与白血病的发生发展有关。而另外有研究指出在T细胞白血病中很多编码核糖体蛋白的
在这篇论文中,我们研究了带自由表面的不可压Navier-Stokes方程组的粘性消失问题,分别考虑带或者不带表面张力两种情形。经过精细的估计,我们证明了带自由表面的Navier-Stokes方程组的速度只有弱的边界层,而对于不同的条件,存在强的或者弱的旋量层。当Navier-Stokes初始旋量和Euler初始旋量的差的极限不为零,或者Euler应力张量与自由表面的法向量的积在自由表面上的水平投影
生物物理学是近年来发展迅速的一门交叉学科,它将物理学中的许多原理和方法引入生命科学,以描述从分子生物学到系统生物学的各个层次的生命现象;而生物学中物质结构与功能的揭示也受助于物理学在技术手段上的进步.因此,生物物理学有着极为丰富的内涵.本文以不同的计算方法为手段,研究了生物物理学中的两个前沿问题:一个是与生物系统中定向输运与力的产生紧密相关的布朗马达定向运动问题,另一个则是关于如何分析高通量测序数
正系统是指当初始条件非负时,输入、输出和状态变量都被约束为非负的动态系统.这种系统已经被广泛应用于许多实际过程的建模,如经济学、生物学、生态学和通信.由于实际控制系统的性能或多或少会受到未建模动态、参数摄动、外源干扰、测量误差等不确定性的影响,因此控制系统鲁棒性研究在控制理论和技术的发展中始终具有重要的地位.针对非线性控制系统的鲁棒性分析,Sontag等学者提出了输入状态稳定性(Input-to-
非常规超导体的新奇物性及其机制一直是凝聚态物理学与材料研究的前沿问题。在本论文中,利用分子束外延(MBE)、氩离子刻蚀退火(IBA)和低温扫描隧道显微镜/谱(STM/STS)等技术,我们在原子尺度系统研究了β-Bi2Pd拓扑超导体、铋基铜氧化物高温超导体和多种铜氧化物薄膜的制备和超导机理。拓扑超导体是一种新奇的量子态,体态因非平庸配对能隙完全打开,边界态则是无能隙的马约拉纳(Majorana)费米
随着科学技术的快速发展,其在教育领域中的应用也愈加普遍,将教学模式和信息技术进行有效结合,从信息化视角创新教学方式,可以帮助学生构建更完善的知识体系。高中阶段数学课程以培养学生的核心素养为重点,传统的教学模式逐渐落后,无法满足学生的认知需求,所以要引进新的教学技术,寻得更好的教学模式。而信息技术对高中数学教学方式的创新主要体现在以下几个方面。
伴随网络技术发展和移动终端多样化,学习者得以随时随地获取互联网中的学习资源,泛在学习逐渐成为数字化时代的新学习样态。泛在学习所带来的学习内容和学习方式的鲜明变化冲击着人们对传统学校、校园和教师的概念,渲染出学校教育将在泛在学习冲击下消亡的可能性。但应当明确,学校教育之所以能够在不同时代不同社会中承担主要的教育任务且至今未变,是因为其教育供给始终依据学习者个体需求和社会对劳动者的需求而调整。学校的存
本论文课题为铷85-铷87超冷混合气体的实验平台搭建与高分波Feshbach共振研究。作者作为设计者和第一搭建者介绍了我们实验小组第二套冷原子系统――超冷里德堡原子及铷85-铷87超冷混合物平台,论文内容将涉及到真空系统、激光系统、时序控制系统、微波系统、磁场控制系统、电场控制系统、原位成像系统、离子探测系统等诸多子系统的设计、搭建和组合。我同时将介绍铷85-铷87超冷混合物中Feshbach共振
在国家话语体系内,探索行为体如何用语言来建构国家身份的相关热度正日渐升温。此外,国家身份的建构问题也是国际关系研究中不可或缺的组成部分。近年来,在人文学科研究日益呈现出注重交叉与应用研究的大趋势下,国内外学界特别是国内学者以高度的社会责任感表现出以理论联系实际来解读社会现象及参与社会管理的巨大热情。尤其面对当前复杂的国际情势,对国家身份建构的相关研究不仅仅是国际政治研究领域的热门课题,话语研究领域
随着物联网、区块链、5G、大数据和人工智能技术的快速发展,大规模的智能设备接入物联网中,产生了海量的物联网数据。基于物联网、区块链、密码学等技术,能够对海量数据进行采集、存储、分析及挖掘,加快物联网设备走向智能化进程,提升用户体验。然而,大量的物联网数据由数据持有者独立享有,采用中心化服务器对数据进行管理,形成了数据孤岛。同时,物联网设备资源的有限性,进一步阻碍了数据潜在价值的实现。为了解决物联网