论文部分内容阅读
开关磁阻电机(Switched Reluctance Motor,SRM)因其结构简单、坚固,且具有支持缺相运行、启动转矩大等优点。目前已在石油、矿产等工业领域得到了广泛运用。但是由于SRM的双凸极结构,导致其在运行过程中转矩脉动过大,影响了其在更多领域的发展。目前抑制SRM转矩脉动最为常见的手段是运用转矩分配函数(Torque Sharing Function,TSF)。本文提出了一种改进型转矩分配函数,并进行了基于遗传算法的改进型TSF参数的优化方法,减小了SRM运行时的转矩脉动提高了电机运行性能。
本文结合SRM结构和原理以及电机的数学模型,详细分析了现阶段抑制SRM转矩脉动的主要方法以及它们的优缺点,并且介绍了常用的直线型TSF曲线,讨论了基于TSF控制策略的SRM控制系统的构成。
对传统直线型TSF进行了分析,针对采用传统直线型TSF在重叠区电流跟踪效果较差、电流峰值较高导致转矩脉动和铜耗高的问题,在直线型TSF的基础上提出了二次型补偿曲线,降低了电流跟踪的难度。并且对补偿曲线参数进行了整定,将整定后的结果与传统直线型TSF进行性能对比,验证了基于补偿曲线的改进型TSF能有效抑制转矩脉动,减小铜耗。
在提出的改进型TSF的基础上分析其开通角、重叠角对SRM转矩脉动、铜耗的影响。提出了基于遗传算法的改进型TSF优化方法,选择铜耗、转矩脉动率作为优化目标,对开通角、重叠角以及二次型补偿曲线参数进行离线寻优,并针对传统遗传算法容易陷入局部最优解的问题,采用了自适应交叉和变异算子,将遗传算法与在线仿真相结合得到了不同转速下转矩脉动率和铜耗最优的改进型TSF曲线。运用Matlab/Simulink仿真软件搭建了基于TSF策略的SRM控制系统,将不同转速下得到的最优的改进型TSF运用到该系统并与参数整定后的改进型TSF进行对比实验,结果证明了基于遗传算法的优化结果能够提高电流跟踪效果,有效抑制转矩脉动的同时降低了换相区间内产生的铜耗。
最后,介绍了以DSP作为核心的SRM控制系统硬件和软件设计,搭建SRM驱动系统测试平台。在该平台上进行了实验验证,进一步验证了TSF优化方法的有效性和可行性。
本文结合SRM结构和原理以及电机的数学模型,详细分析了现阶段抑制SRM转矩脉动的主要方法以及它们的优缺点,并且介绍了常用的直线型TSF曲线,讨论了基于TSF控制策略的SRM控制系统的构成。
对传统直线型TSF进行了分析,针对采用传统直线型TSF在重叠区电流跟踪效果较差、电流峰值较高导致转矩脉动和铜耗高的问题,在直线型TSF的基础上提出了二次型补偿曲线,降低了电流跟踪的难度。并且对补偿曲线参数进行了整定,将整定后的结果与传统直线型TSF进行性能对比,验证了基于补偿曲线的改进型TSF能有效抑制转矩脉动,减小铜耗。
在提出的改进型TSF的基础上分析其开通角、重叠角对SRM转矩脉动、铜耗的影响。提出了基于遗传算法的改进型TSF优化方法,选择铜耗、转矩脉动率作为优化目标,对开通角、重叠角以及二次型补偿曲线参数进行离线寻优,并针对传统遗传算法容易陷入局部最优解的问题,采用了自适应交叉和变异算子,将遗传算法与在线仿真相结合得到了不同转速下转矩脉动率和铜耗最优的改进型TSF曲线。运用Matlab/Simulink仿真软件搭建了基于TSF策略的SRM控制系统,将不同转速下得到的最优的改进型TSF运用到该系统并与参数整定后的改进型TSF进行对比实验,结果证明了基于遗传算法的优化结果能够提高电流跟踪效果,有效抑制转矩脉动的同时降低了换相区间内产生的铜耗。
最后,介绍了以DSP作为核心的SRM控制系统硬件和软件设计,搭建SRM驱动系统测试平台。在该平台上进行了实验验证,进一步验证了TSF优化方法的有效性和可行性。