论文部分内容阅读
主动磁悬浮转子由于其非接触特性相较于传统机械轴承有着无摩擦无需润滑的优势,具有非常好的应用前景。然而当转子高速旋转至激发出一阶弯曲模态频率的转速时,其稳定性会受到陀螺效应的影响。为此提出了一种经典的解耦控制理论——基于PID的交叉反馈控制,其中交叉反馈项的引入就是为了能够抑制陀螺耦合效应,然而其并不能解决PID控制抗干扰性弱,受非线性磁场耦合影响大的问题。因此本文提出了一种新型的交叉反馈控制算法:基于特征模型的交叉反馈控制。将具有自适应功能的特征模型算法与抑制陀螺耦合效应的交叉反馈控制相结合。首先本文建立了传感器、功率放大器以及单自由度的磁轴承—转子数学模型,并通过五自由度受力分析建立起包含惯性质量与陀螺耦合力矩的四自由度的状态空间方程,并准确求出了状态空间方程的具体参数值。紧接着又介绍了特征模型辨识与全系数自适应控制算法的原理及相关理论证明,说明了两者的“载体”关系。为了说明基于特征模型的交叉反馈的可行性,将离散后PID控制量与特征模型控制量进行对比分析,建立起了两种控制算法的“桥梁”。然后将PID控制器替换为特征模型控制器,在转子运动微分方程中引入交叉反馈项后计算出交叉反馈系数的数学表达式。进而根据所做的控制原理图在Matlab/Simulink中搭建出基于特征模型的交叉反反馈仿真模型,通过单自由度的阶跃性能以及其抗干扰性说明特征模控制下转子的起浮性能。并改变交叉反馈系数的衰减因子值来观察转子在临近一阶弯曲模态频率下的轴心运动轨迹,定性地说明了基于特征模型的交叉反馈控制的控制效果。最后,完成了控制器的软硬件设计与转速采集组件的软硬件设计,分别从转子起浮与高速旋转实验对比分析基于特征模型的交叉反馈控制的磁轴承系统的运行性能。通过四组不同的衰减因子实验表明:当衰减因子为0.5时,磁轴承—转子系统达到了最佳的控制效果。将其与加入交叉反馈前对比发现在临界转速附近其径向自由度振动峰值分别下降了18.4%、20.5%、10.5%、11.3%。