论文部分内容阅读
在数字通信系统中,特别是面向IEEE 802.11ac标准的无线通信系统中,删余卷积码与对应的维特比译码算法作为一种必选的提高信息传输可靠性的技术,具有重要的研究价值。随着人们对数据传输速率要求的不断提升,硬件设备的复杂度也在不断提高,而译码复杂度、硬件系统功耗与资源消耗问题制约了删余卷积码的维特比译码器在数字通信中的进一步发展与应用。本文基于IEEE 802.11ac标准,以降低算法计算复杂度、减小硬件设计的系统功耗和硬件资源消耗为目标,对信道编译码算法(包括二进制卷积编译码、交织与扰码算法)进行设计并改进;在完成算法设计的基础上对信道编码各模块进行硬件设计,本文针对传统设计方法的高功耗和高硬件消耗问题提出优化方案。本文的主要研究成果如下:1.针对删余卷积码的维特比译码算法在高码率下计算复杂度高的问题,提出改进的维特比译码算法。为了解决删余卷积码在码率高于1/2的情况下,译码的计算复杂度较高,且随着码率的增大,译码复杂度也不断提高的问题,本文在传统的维特比译码算法中引入调整因子,可实现当码率大于1/2时有效减少计算分支度量值的步骤,并且随着码率增大,改进算法对译码复杂度的优化更加明显,通过正交频分复用系统环路的搭建,可评估系统的误码率性能;2.针对删余卷积码的译码硬件设计复杂度随码率增高而提高的问题,提出在硬件设计过程中,增设存储删余位置指示信息的寄存器。该寄存器用来指示译码的输入数据是否为补零后的数据。在计算分支度量值时,该寄存器中的数据与度量值计算结果进行相与,得到加比选模块的输入度量值,可有效减少删余卷积码的维特比译码器在计算分支度量值时的计算步骤。本文搭建FPGA验证平台,并运用QuartusⅡ软件和SignalTapⅡ在线逻辑分析仪可验证硬件设计结果;3.针对删余卷积码的维特比译码器效率低和系统延时较大的问题,提出在译码器内部对加比选模块的设计采用4个加比选子模块并行同步运算的基4方法,可有效提高系统译码效率,并降低译码延时;4.针对信道编码的硬件设计在硬件资源消耗、系统功耗和编译码性能三者之间不平衡问题,本文提出串并结合的硬件设计方法。信道编码发送端采用全并行和组合逻辑进行硬件设计,可大幅降低系统功耗;信道编码接收端采用串并结合的处理方法,通过250KHz和20MHz双时钟折中处理硬件资源消耗与系统功耗问题。接收端的解交织模块、补零模块和反扰码模块采用并行的处理方法,对于译码模块则增设一个输入输出串并转换接口。在调制编码机制取值小于2时,译码输入数据通过并转串,进行串行译码;在调制编码机制取值大于或等于2时,译码输入数据采用多路译码模块同步并行译码方法,在有效降低系统功耗的同时减少硬件资源。本文设计的电路采用Magnachip的0.18μm CMOS工艺完成版图设计,可进行投片验证。