论文部分内容阅读
滞后随机系统既在确定性模型的基础上增加随机因素,又考虑了非确定性模型的滞后因素,故滞后随机系统往往能更加真实地模拟实际问题。因此,被广泛应用于经济金融、神经网络、人口统计、工程技术等科学领域。稳定性是这些领域研究的重要课题,因为一切系统能够正常运行的前提是稳定性。然而,对大部分滞后随机系统,由于其非线性和耦合性,很难求出其解析解,所以通过离散化的数值方法来研究系统的稳定性是一种有效的途径,它是窥探系统内部结构和性态的一种手段。本文主要研究三部分内容:第一部分是非线性滞后随机泛函微分方程及其数值解的稳定性研究;第二部分是几类特殊滞后随机模型及其数值解的稳定性研究;第三部分是中立型随机微分方程与其数值解稳定性的等价性研究。全文由如下七章组成。第一章介绍了滞后随机系统的研究背景及其数值方法的稳定性研究现状,并给出本文的工作概要及贡献。第二章研究了在非线性即广义多项式增长条件下随机泛函微分方程及其向后Euler-Maruyama方法的几乎必然指数稳定性。应用实用非负半鞅有界引理,证明了当步长不大于单边可解性要求的步长时,向后Euler-Maruyama方法能保持原系统的几乎必然指数稳定性。第三章研究了滞后随机Hopfield神经网络系统及其Euler-Maruyama方法、向后Euler-Maruyama方法及其两类θ方法的均方指数稳定性。在简单、合理条件下,证明了在依赖于步长的条件下,Euler-Maruyama方法能够保持原系统的均方指数稳定性;对于任意的步长,向后Euler-Maruyama方法能够保持原系统的均方指数稳定性。同样地,对于两类θ方法,即随机线性θ方法和分步θ方法,当θ∈[0,21)时,存在一个依赖于θ的常数?*>0使得?∈(0,?*)时,随机线性θ方法和分步θ方法是均方指数稳定的,当θ∈[21,1]时,对于任意的步长,随机线性θ方法和分步θ方法是均方指数稳定的。第四章研究了滞后随机积分微分方程及其分步θ方法的均方指数稳定性。在线性增长以及单边条件下,利用Lagrange插值技术,证明了隐式算法–分步θ方法能保持原系统的均方指数稳定性。第五章研究了由L′evy噪声驱动的中立型比例滞后随机微分方程的p阶矩指数稳定性。与以往比例微分方程模型相比,本章考虑了中立项、L′evy噪声的驱动以及非线性因素,因此具有更广泛的实际应用。第六章研究了具有离散时间状态反馈的随机控制系统的均方指数稳定性与数值仿真。在一个简单的假设条件下,得到了所讨论闭环系统的稳定性判据。对于数值仿真,在相同的稳定性判据下,证明了Euler-Maruyama方法和向后Euler-Maruyama方法是均方指数稳定的,即证明了存在着一个步长上界?*>0,当0<?<?*时,Euler-Maruyama方法能够保持原系统的均方指数稳定性。对于任意的步长,向后Euler-Maruyama方法能够保持原系统的均方指数稳定性。第七章研究了中立型随机微分方程与其数值解稳定性的等价性。在全局Lipschitz、压缩映射以及初值函数连续性条件下,对于充分小的步长,中立型随机微分方程是均方指数稳定的当且仅当Euler-Maruyama方法是均方指数稳定的。这个结论具有十分重要的现实意义,即在如上假设条件下,中立型随机微分方程的运行轨线的渐近性质可以由其Euler-Maruyama数值解的轨线描述。