【摘 要】
:
电感是集成电路当中应用最为广泛的无源器件之一,硅通孔(Through-Silicon Via,TSV)技术作为三维集成电路(Three-Dimensional Interagted Circuit,3D IC)的关键技术,为满足电感设计的实际需要提供了新的选择,即TSV电感器。实际制造与应用过程中,TSV电感器中的力场、温度场和电场之间的相互影响是一个非线性耦合的过程,简单地分开考虑应力、热、电的
论文部分内容阅读
电感是集成电路当中应用最为广泛的无源器件之一,硅通孔(Through-Silicon Via,TSV)技术作为三维集成电路(Three-Dimensional Interagted Circuit,3D IC)的关键技术,为满足电感设计的实际需要提供了新的选择,即TSV电感器。实际制造与应用过程中,TSV电感器中的力场、温度场和电场之间的相互影响是一个非线性耦合的过程,简单地分开考虑应力、热、电的变化低估了其带来的负面影响,导致严重的可靠性问题。而且,TSV电感器的应用领域广泛、应用环境复杂。为了保证TSV电感器的可靠性,非常有必要对其多物理场耦合特性进行协同研究。本文分别针对TSV 3D螺旋电感和TSV 3D环式螺旋电感,围绕TSV电感器多物理场问题,开展的主要内容如下:1、考虑到材料热膨胀系数不匹配造成的热应力分布最终对电感电学性能产生的影响,采用ANSYS workbench仿真软件,对电感的热-力-电耦合特性进行研究,得到的电学参数与不考虑多物理场耦合情况下的电学参数进行对比,结果表明P型硅衬底情况下变化最大,TSV 3D螺旋电感电感值与品质因数的变化率分别为18.87%和8.27%,;TSV 3D环式螺旋电感电感值与品质因数的变化率分别为15.81%和6.81%。考虑进一步提高研究效率缩短仿真时间,采用二维平面电路代替三维模型仿真,采用ADS仿真软件,选择TSV 3D螺旋电感构建电感等效电路模型,在电路层面进行物理场耦合研究,结果表明与三维模型仿真结果误差在2%左右,可以替代三维模型进行研究。2、考虑实际通电过程中的电热耦合,采用COMSOLMultiphysics仿真软件,研究器件温度分布,再通过与力场耦合,完成TSV电感器电-热-力耦合特性研究,最终通过对比电学参数来表征影响结果,P型硅衬底情况下变化最大,TSV 3D螺旋电感电感值和品质因数的变化率分别为14.13%和5.91%。考虑工作温度对电感产生的影响,选择TSV 3D环式螺旋电感研究了其随工作温度变化情况下电学参数的变化情况。本文对TSV电感器的多物理场耦合模型进行深度分析,研究结果有利于设计人员预测其在3D IC中的可靠性,对于结构设计优化、降低设计成本等起着非常显著的作用。
其他文献
自有机场效应晶体管(OFETs)被发现研究以来,在柔性驱动显示、传感器阵列以及生物便携设备应用等方面广受关注。基于溶液法制备OFETs因操作简单、对制备环境要求相对较低等优势备受青睐,所得的有源层薄膜质量对器件性能至关重要。本文采用的有机半导体材料是聚3-己基噻吩(P3HT),溶液法旋涂时聚合物分子呈无序卷曲状态,阻碍电荷载流子传输,因此改善P3HT分子成膜的结晶度和排列有序性对提高器件性能有重要
自世界上第一台红宝石激光器问世以来,激光以其亮度高、方向性好和相干性好等特性,在工业生产、国防、医疗、科学研究等领域获得了广泛应用。特别在合成波绝对距离干涉测量应用中,双频激光器发挥着极其重要的作用,其频差越大,合成波长越小,测距精度就越高;同时,为了易于实现对被测距离的粗测,需要较大的合成波长,即要求双频激光的频差尽量小,因此,大频差可调谐双频激光器成为合成波绝对距离干涉测量系统的理想光源。固体
3D-SiC和2D-MoS2的组合,结合了 2D-MoS2的高p型电导率、低开启电压以及SiC的宽带隙和高击穿电场,使异质结在光电探测器和光催化领域表现出潜在的优势。2D材料的电子结构直接依赖于衬底材料的表面结构,SiC作为直接生长MoS2的衬底材料,其表面形态对MoS2以及MoS2/SiC异质结界面的电学性质都起着关键的作用,因此理论探索SiC的不同表面如何影响界面及MoS2的电学特性,在3D-
混沌系统具有的类噪声、宽频谱、初值敏感、脉冲自相关、非周期等特点,使其被广泛应用于各个领域,应用于通信和信息加密是其中两个重要方向。近几年来,混沌与无线通信物理层调制方法结合获得抗多径性能引起了关注,同时,具有无穷维密钥空间的延迟超混沌系统的加密应用也展示了独特的性能。5G通信已经成为人们日常通信手段,5G更适合的场景为工业物联网,而工业物联网环境中密集的终端集合、复杂的信道环境要求通信方法在大容
随着半导体技术的快速发展,碳化硅(SiC)凭借特有的禁带宽度大、电子迁移率高、热导率高等优良特性,使其成为制造高温、高频、大功率以及光电集成器件的理想材料,在微电子、光电子以及光伏行业得到了广泛应用。为了降低制造成本,被切割的晶体直径逐渐增大,晶片厚度在不断降低,同时对切割技术要求也越来越高。切割是SiC单晶片制造的第一道工序,切片的质量直接影响晶片后续加工工序中的材料去除量、晶片成品率、加工效率
研究各种水质因子(水温、溶解氧、电导率、pH、营养盐等)对三峡库区支流水体富营养化的驱动效果,为库区支流水体富营养化的防控与治理提供科学依据。于2018年11月至2019年10月在三峡库区高阳平湖进行了12次样品采集,获取了水温、水体pH、营养盐、水体溶解氧等指标数据,利用主成分分析法研究三峡库区支流水体富营养化状况,并分析其主要驱动因子。结果表明:应用主成分分析法将7项水质指标转换提取为2种主成
太赫兹波具有探测隐藏物体、对有机生物体无损检测等特性,太赫兹成像技术基于太赫兹波的特点,在癌细胞探测、缺陷检测、安全检查等领域发挥着重要的作用,对于理论研究及工业应用有十分广阔的应用前景。太赫兹数字全息术是太赫兹成像技术与数字全息技术相结合的产物,相对于传统成像技术来说,这种干涉测量法既可以得到穿透或从物体反射的太赫兹波的振幅,又可以得到其中的相位信息,而且,它一定程度上能够改善成像质量,提高系统
海洋悬浮团聚颗粒对水下蓝绿激光通信、海底探测、海洋救生和潜艇作战等方面有着重要的研究意义。真实海底中的悬浮颗粒物数量多结构复杂,导致水下蓝绿激光通信过程中造成了大量的蓝绿激光能量衰减,造成了通信过程误码率的提升。因此研究海洋悬浮颗粒对蓝绿激光的散射吸收特性具有重要的研究价值。海洋悬浮颗粒大致分为两大类,分别是非色素海洋悬浮颗粒和海洋浮游藻类颗粒物,本文依据相关资料文献建立了大量的海洋悬浮颗粒团聚模
在非线性系统滤波问题中,粒子滤波算法因不受系统高斯假设的约束且易于实现,受到了广泛关注。然而,粒子滤波算法中存在的粒子退化和样本贫化难题,严重影响滤波性能。因此,对粒子滤波算法进行优化改进具有重要的理论与实际意义。本文针对粒子滤波算法中粒子退化问题展开研究,主要包括以下几方面内容:1.针对如何从重要性密度函数的优化设计出发解决粒子退化的问题,研究了熵准则结合扩展卡尔曼滤波的重要性密度函数设计方法,
高昂的SiC衬底是制约器件成本的关键因素,开发大直径、厚晶锭SiC生长技术有望降低SiC衬底成本。目前,虽然SiC晶体制备实现了 4英寸到6英寸换代,但6英寸SiC晶体生长还存在生长晶锭不够厚、热应力大和缺陷密度高等问题。为此,本文采用有限元分析法,开展PVT法6英寸SiC晶体生长系统建模,研究工艺参数、保温层、坩埚以及感应线圈等对热场和生长速率影响,分析影响厚晶锭生长的主要因素,探究生长环节减少