基于略图的网络测量关键技术的研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:mylook1028
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着互联网规模飞速扩展,网络测量作为监控、认知和掌握网络行为的一个重要手段,是当前计算机网络领域的研究热点之一。网络测量能够为拥塞控制,流量计费,容量规划和异常检测等应用提供支撑,对于日常网络运营和网络管理非常重要。目前常用的网络流量测量技术,主要包括基于采样和基于数据流两类。在基于数据流的技术中,基于略图的网络测量因其计算效率高、准确度高等优势成为业界关注的焦点。然而,略图是一种紧凑的概率性数据结构,基于略图的测量仍面临着如何在给定的内存空间下获得更小的估计误差。为解决这一问题,越来越多的复杂略图结构被提出,但复杂结构中往往存在若干影响估计误差的参数需要设置,现有方案仅靠简单规则或人为经验来进行参数设定,难以实现最优的测量。为了解决上述问题,本文的主要工作有以下两个方面:(1)受多层略图结构的启发,提出一种新型的基于三层略图的网络测量方法,该略图结构由精确统计层,缓冲层,近似统计层三部分组成,能够在给定的内存空间下提供比现有方案更小的估计误差。(2)针对多层略图结构中内存分配参数设定问题,提出一种基于强化学习的略图层间内存分配方法,通过神经网络模型可以对略图不同层间的内存占用比例进行调整,合理分配略图不同层间的内存,使网络测量结果达到更高的准确度。本文采用了真实的互联网数据集对所提出的三层略图方法和略图层间内存分配方法进行了实验验证。实验结果表明,与现有测量方法相比,本文提出的基于三层略图的网络测量方法和基于强化学习的略图层间内存分配方法均能够显著的提高网络测量准确度。
其他文献
本试验主要研究低蛋白日粮中添加AKG饲喂肥育猪后,对肥育猪生长性能、氮代谢、血液生化指标、血液和骨骼肌氨基酸水平的影响。选取36头体重(54.21±2.95)kg杜×长×大杂交肥育猪,随机分到4个试验组,每组3个重复.每个重复3头试验猪。每组日粮粗蛋白含量均为10.99%,其中第一组为对照组,不添加AKG;其余三个试验组AKG添加量分别为0.5%,1.0%,1.5%。按照标准回肠可消化氨基酸需求量
改革开放以来,我国经济社会进入高速发展阶段,但同时部分生产经营者在追求自身经济利益最大化的过程中不计后果,造成一系列市场乱象,甚至出现生产经营假冒伪劣现象,严重损害
网壳稳定性是网壳结构研究中颇为关键的问题,主要包括结构的整体失稳和杆件的局部失稳。影响网壳稳定性的主要因素包括:杆件的初始缺陷,矢跨比,荷载形式和材料性质等。在研究
第一部分2型糖尿病患者低频振幅与分数低频振幅的rs-fMR I研究目的:利用静息态磁共振成像(Resting-state functional magnetic resonance imaging,rs-fMRI)技术,探究2型糖尿病患者全脑低频振幅(amplitude of low frequency fluctuation,ALFF)与分数低频振幅(fractional amplitude o
移动自组网(MANET)具有不受固定网络设施的限制及组网快速、灵活、适应性强等优点,在军用通信、重大灾害事故应急抢险救援、野外科考作业以及社会日常生活等领域获得广泛应用
磁控溅射是极其重要的薄膜制备技术,在工业生产和科学研究领域都得到广泛应用。随着高端芯片制造中高离化金属膜的制备与刻蚀和具有特殊结构高生长密度薄膜的制备需求,高离化率、荷能离子辅助的磁控溅射得到特别关注。为了实现高离化率、荷能离子辅助的磁控溅射,低气压预离化磁控溅射成为可能的技术途径之一。这种技术采用辅助的等离子体产生装置,在低气压下放电,提供磁控溅射放电的离化“种子”,实现低气压的磁控溅射放电。由
Shack-Hartmann波前探测器是一种高效的波前探测器,常用于自适应光学(Adaptive optics:AO)系统中的波前相位检测器件。AO与显微镜技术相结合,通过使用自由变形镜(Deformable
随着全球经济的快速发展,能源供应紧缺逐渐成为当代人类社会发展所要面临的最为紧迫的问题之一。其中,可再生能源中的太阳能是解决能源供应紧缺的一种有效方式,最有前景的太阳能利用形式是具有光电转换作用的太阳能电池,其中,铜锌锡硫(Cu_2ZnSnS_4,CZTS)作为新型的太阳能电池,因其中的元素含量丰富、无毒,且具有合适的带隙和较高的吸收系数使它成为了目前最具有商业发展前景的薄膜太阳能电池之一。除了CZ
随着互联网用户数量的不断增加,人们对于互联网上的知识需求规模日益庞大。因此如何搜集、整理和运用这些知识成为了一个重要的课题。而抽取实体关系的过程就是获取大量人们
能源危机促使人们不断研究开发新能源,染料敏化太阳能电池(DSSCs)因其可设计、低成本以及高效的特点受到人们越来越多的关注。电池的光电转换效率与染料分子结构及其在Ti0_2电极上的锚定有关。有着富电子性质的三苯胺类染料是目前有机光敏剂中研究最广泛的敏化剂之一。通常将敏化剂通过物理浸泡吸附的方法直接敏化TiO_2电极,这种方法吸附的染料分子锚定能力差,并且表面吸附方式的不确定性也限制了理论计算的应用