【摘 要】
:
图像语义分割技术是目前计算机视觉技术领域中的热门研究方向,其研究具有重要的军事及民用价值。随着军事智能化要求的提高,语义信息发挥越来越重要的作用,这更加促进了语义分割技术研究的发展。本文以公开大规模数据集中的场景和物体作为研究对象,对图像语义分割算法展开了研究。研究重点内容包括以下三个部分:(1)介绍了语义分割技术的发展现状,对目前国际上主流的语义分割算法进行了归纳总结。在对目前国际上使用最广泛的
论文部分内容阅读
图像语义分割技术是目前计算机视觉技术领域中的热门研究方向,其研究具有重要的军事及民用价值。随着军事智能化要求的提高,语义信息发挥越来越重要的作用,这更加促进了语义分割技术研究的发展。本文以公开大规模数据集中的场景和物体作为研究对象,对图像语义分割算法展开了研究。研究重点内容包括以下三个部分:(1)介绍了语义分割技术的发展现状,对目前国际上主流的语义分割算法进行了归纳总结。在对目前国际上使用最广泛的两个二维语义分割数据集PASCAL VOC 2012数据集和Cityscapes数据集进行详细介绍的基础上,详细阐述了二维语义分割的重要评价指标。(2)针对全卷积神经网络算法的不足,提出一种融合超像素的图像语义分割算法。算法的深度神经网络模块采用金字塔池化结构融合多尺度特征,引入了一种新的监督损失策略;结合超像素分割SLIC算法,提出了一种融合超像素信息的语义标注策略。算法有效地融合了神经网络的高级特征与超像素分割的低级特征,在复杂场景上达到了良好的语义分割效果。(3)基于深度学习框架作为前端、概率图模型作为后端的思路,针对条件随机场模型存在的不足,深入研究了基于条件随机场的语义分割算法。深度学习前端框架引入Atrous卷积技术,设计了Atrous卷积空间金字塔模型;后端采用一种改进的条件随机场进行优化,并与现有的条件随机场相关算法进行对比。算法实现了深度学习框架与改进条件随机场的有效融合,在保证准确度基本不变的情况下极大地提升了算法时间,通过在标准数据集上的验证,实现了良好的语义分割效果。本文在充分调研现有语义分割算法的基础上,基于结合上下文信息的思路,采用了金字塔池化、Atrous卷积等技术,使用了超像素分割、条件随机场等手段,研究了两种不同深度学习框架下的算法。本文研究的算法取得较好的效果,具有一定的研究意义和应用前景。
其他文献
合成孔径雷达(Synthetic Aperture Radar,SAR)是利用微波进行感知的主动式传感器,其不受天气、光照等条件的限制,可对感兴趣目标进行全天时、全天候的观测,在军事和民用领域发挥了重要作用。飞机目标是战场侦察与监视的重要对象,具有高价值和时敏变化等特点,如何高效、准确地检测、识别飞机目标是SAR图像目标解译领域的重要课题,也是难点之一。当前,随着SAR传感器分辨率达到亚米级,基于
逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)目前已成为人们获取非合作运动目标高分辨雷达像的常用手段,雷达像的分辨率越高,其展现的目标信息越丰富。针对传统ISAR分辨率增强方法的不足,本文重点研究用于ISAR分辨率增强的深度学习方法。所开展的研究工作和取得的研究成果如下:第一章回顾了国内外ISAR分辨率增强技术的研究进展,重点分析了目前已经广泛应用的各
随着自动控制技术的发展,民用无人机越来越广泛的应用给社会带了来许多便利,但也对个人、社会、军事等领域带来了严重威胁。因此,快速高效的低空无人机检测是应对无人机威胁的前提。本文利用红外与可见光波段的光电探测手段,结合深度学习技术,开展了对低空无人机目标图像检测识别算法的研究,主要工作内容如下:(1)基于深度学习的低空无人机检测识别算法优选。首先,利用红外与可见光采集设备与3型民用无人机构建了双波段无
随着智能家居机器人、无人驾驶、虚拟现实等新兴产业的爆炸式发展,对三维场景的语义分析与理解的需求也越来越紧迫。与此同时,空间扫描技术的越发成熟,三维传感技术也取得了重大进展,大量的真实场景三维点云数据的获取也越来越容易。为此,三维场景的语义分析也越来越受到数据的驱动。由于三维点云数据的无序性,基于卷积神经网络的深度学习方法不能直接作用于点云上,而将点云数据转换为体素,采用三维卷积方法的计算开销太大,
作业减负,关键在于消除学生的作业焦虑,提升其学习主动性。这就需要打开作业“黑箱”,将作业纳入学习过程之中,让学生参与到作业评价中来。作业设计可秉持评价标准共定、及时/持续反馈、作业前置及结果可视四项原则。教师可尝试重构作业设计思路,引导学生理解作业目标,与学生共同协商任务内容、商定评价标准,同时注重作业反馈,指导学生改进,让学习为作业提供支架,用作业改进学生的学习表现,使学习与作业一体发展,增强学
通信辐射源个体识别(又被称为通信辐射源指纹识别)是通过测量发射机反映在信号上的差异对信号和发射机进行关联,在电子对抗中发挥着重要作用,是现代电子战中不可缺少的手段。本文主要研究无监督条件下通信辐射源个体识别,开展的主要工作如下:(1)将无监督学习引入到通信辐射源个体识别中,开展基于密度峰值聚类算法的通信辐射源个体识别方法研究。首先在双谱的基础上计算通信辐射源观测信号的直方图特征,提高其个体信息表征
人工智能有望成为新一轮科技革命、产业革命和军事革命的核心驱动技术,对于促进国家的经济发展、军事赋能和增长政治影响力方面都有巨大的应用潜力,因而也成为了国际竞争的新焦点。中美两国均高度重视人工智能这一领域,纷纷出台了战略政策文件助推其研发和应用,进行着激烈竞争。但另一方面,中美在人工智能领域仍存在着诸多合作。如何理解在中美战略竞争背景下,两国在人工智能领域仍存在着广泛而密切的合作关系?中美在人工智能
2001年发生在美国的9·11恐怖袭击,其影响之大、之广、之深远远超出我们的想象。对全世界而言,它是一个改变了世界格局的历史事件;对于美国而言,它是一次改变了国家政治形态的恐怖袭击;对于美国内民众而言,它是一场摧毁对未来期许的灾难。时隔多年,当时深受9·11之害的个人和家庭,今之何如?亚当·谢夫特的最新小说《那个未曾谋面的人》给了我们答案。本篇翻译实践报告的原文节选自《那个未曾谋面的人》一书。小说
现代战争对雷达目标识别提出了更高的要求,由于现役雷达大部分是低分辨雷达,对其开展目标识别技术的研究具有重要军事意义。在小样本、样本不均衡等复杂电磁环境条件下,传统低分辨雷达目标识别方法存在泛化性较差、识别率较低等问题。本文围绕深度学习方法对低分辨雷达目标识别技术开展研究,主要研究内容如下:传统低分辨雷达目标识别技术采用先提取信号特征,再基于特征进行识别的两步识别方法。论文首先研究了基于深度学习的低
"穿透式"行政检察监督打破行政诉讼固有"遮蔽",弥补行政检察监督缺位,是参与社会治理多元主体中不可替代的重要力量。"穿透式"行政检察监督多层穿透,具备坚实的理论基础。不仅如此,其通过发挥"一手托两家"的监督作用,在司法实践中具有监督行政诉讼活动、促进依法行政、实质性化解行政争议、提升社会治理能力的制度优势。实现"穿透式"行政检察监督之功效,应遵循精准监督、双重监督、实质监督、类案监督的监督理念,同