论文部分内容阅读
铋层状结构无铅压电陶瓷具有较高的居里温度和良好的抗疲劳性能,因此在高温压电应用及铁电存储方面具有广阔的应用前景。但是单一铋层状材料具有难以实用化的缺点,因此本文采用生成固溶体和离子取代两种方法改善材料的电学性能,系统研究了材料的结构特性与介电性能、铁电及压电性能的关系,对制备高性能且实用性的铁电材料具有一定的指导意义。本论文采用传统陶瓷制备工艺,成功制备了(SrBi2Ta2O9)x(Bi3TiTaO9)1-x陶瓷体系。该体系形成了单一正交晶系铋层状结构,随着SBT引入量的增多,晶粒逐渐增大,结晶度逐步提高,晶粒尺寸趋于一致。当x=0.6mol时,室温下的介电性能最优,此时=131.6516,tan =0.01273。SBT含量的增多使晶体中A位加权离子半径增大,同时离子极化率减小,因此居里温度随之降低(x=0.6,Tc=450℃)。首次将钙钛矿结构与铋层状结构固溶制得(BaTiO3)x(SrBi2Ta2O9)1-x(0.05≤x≤0.3)陶瓷。当x≤0.2时为单相铋层状结构,当x=0.3时形成了四方相。由扫描电镜可知,陶瓷样品形成了铋层状结构与钙钛矿结构共存的固溶体。室温下BT-SBT陶瓷的介电常数在1kHz100kHz范围内具有频率稳定性,tan维持在6.0×10-3数量级以下。BT-SBT系列陶瓷具有弥散相变和频率色散特征,同时具有较大的弥散性指数(>1.6),具有典型弛豫型铁电体特征。随着BT含量的增加,陶瓷样品的居里温度Tc均为650℃,远高于BT(Tc=130℃)和SBT(Tc=335℃)的居里温度。当x=0.1mol时, =200,tan =0.00376,d33=12 pC/N,表现出优异的综合性能。本文还采用了离子取代的方法对铋层状结构化合物进行改性研究。选用同主族的Ba2+取代CaBi4Ti4O15中A位的Ca2+,所形成的Ca1-xBaxBi4Ti4O15体系为四层的铋层状结构,Ba2+取代减小了正交畸变程度,降低了陶瓷样品的居里温度,提高了陶瓷在室温下的介电和铁电性能,还选用同主族的K+取代Na0.5Bi4.5Ti4O15中A位的Na+,样品均形成单一相的铋层状结构,K+含量的增加,增大了晶格畸变,提了结晶度。由于烧结过程中K+容易挥发,造成反应物配比中(K,Bi)空位的增加,使居里温度不随K+含量的变化,四个样品的居里温度均为660℃。样品的介电损耗峰值在低温处出现了弛豫峰,根据Arrhenius公式拟合可知,该弛豫过程是由于氧空位的热运动引起的。