论文部分内容阅读
三元复合驱作为我国三次采油的主导技术之一,通过形成油水间超低界面张力而起到大幅提高驱油效率的作用。但是,超低界面张力状态达成条件苛刻,需要大量碱的加入才能实现,且影响因素复杂,尤其受驱替剂组分损失影响严重。针对以形成超低界面张力为原则设计的传统三元复合体系的技术局限性,旨在重新评估化学复合体系驱油效率的主控因素、发展化学驱理论并优化复合驱技术,分别从驱油机理和应用效果等方面开展了理论计算分析和物理模拟实验。获得了驱替剂组分和残余油饱和度在注采井间的分布规律。利用超长填砂物理模型进行室内驱油实验,并结合基于比色法所建立的残余油饱和度测定方法,确定了不同驱替阶段、不同提高采收率方式下驱替方向上残余油饱和度与距离的关系和复合驱后残余油的分布特征。通过对沿程采出样品中化学剂浓度的分析,得到复合体系各组分损失量在动态运移过程中的变化规律,以累计滞留量和质量分布偏差等参数描述了化学剂在驱替方向上的不均匀分布现象和程度,确定化学剂无效滞留的临界水平及其对驱油效率的影响。结合对超低界面张力、乳化性能和黏弹性有效作用范围的综合分析,确定了复合体系驱油效率主控因素对注采井间不同区域开发程度的影响。利用室内物理模拟实验,得到动态运移条件下大庆典型三元复合驱超低界面张力的有效作用范围及其与井距的函数关系,分析了超低界面张力作用范围与残余油富集区域不重叠的固有矛盾。同时,基于对乳化程度影响因素的分析,建立了综合评价采出液乳化程度的综合分散准数(Synthetical Dispersion Number,SDN)法,并利用该方法分析了动态运移条件下复合驱乳化的有效作用范围。通过对比实验,提出了复合体系注入时机提前有利于原油乳化的认识。此外,分析了复合体系弹性和黏性随运移距离增大而变化的趋势,指出弹性损失是导致溶液深部驱油效率大幅下降的主因。掌握了油水分散体系在动态运移过程中的能量稳定机制。利用玻璃刻蚀微观模型实验分析了乳化启动残余油的三种机制及其触发条件。从动力学角度分析乳状液电导率与颗粒聚并活化能的关系,探讨了聚并速率的控制因素,证实界面张力的降低对于控制乳状液颗粒聚并速率的作用非常微弱。从热力学角度分析了油水分散体系的分散程度和界面自由能对界面总能和体系稳定性的影响。在超低界面张力和乳化的有效作用范围实验数据的基础上,计算了油水分散体系在动态运移过程中粒间电性斥力和孔喉剪切力对抗油滴内聚力的做功量,并明确了二者抵消内聚功的程度,阐明了运移过程中乳状液破乳的自发性,并进一步分析了动态运移条件下驱油效率的控制因素。借助表征复合体系乳化性能的综合乳化性能指数(Comprehensive Property Index,CPI)法,优选得到基于驱油效率主控因素的新型三元复合体系配方,并对注入时机进行了优化。利用超长填砂模型和模拟五点法井网三维岩心模型的驱油实验,评价了新体系提高采收率的效果,全面评估了动态运移条件下新型复合体系界面张力、黏弹性和乳化效果的有效作用范围及其对驱油效率的影响,分析了新型三元体系较传统三元体系的优势。新型三元体系可以借助乳化启动残余油能力提高驱油效率,弱化了对配方的界面性质的要求;强碱用量大幅减小,节省成本并减弱地层伤害;借助疏水缔合聚合物的耐盐耐碱性质,在大幅降低聚合物用量的条件下仍能保证体系的流度控制能力;将三元体系的注入时机提前可以充分发挥乳化的作用。综上,基于驱油效率主控因素设计的新型三元体系凭借乳化性能和黏弹性等性质的作用,可以更有效地开发油藏深部,获得比传统超低界面张力三元体系更高的驱油效率。研究成果提升了对复合驱油体系动态变化条件下驱油效率的认知,发展了从能量角度阐释多相分散体系变化的方法,对深化提高三元复合驱理论认识、完善化学驱油机理、指导复合体系的优化设计具有一定的参考意义。