论文部分内容阅读
21世纪,无线通信行业迎来了黄金时代,传统的有线通信逐渐被现代无线通信取代。随着民用无线通信事业的飞速发展,低频段的无线频谱资源逐渐趋近于饱和。在这种背景下,民用无线通信开始转向高频频段,如K、Ka波段,针对Ka波段无线通信相关技术的研究极具发展潜力。驱动级放大器在Ka波段等高频段无线通信系统中扮演着十分重要的角色,尤其是在雷达、卫星等远距离通信系统中,驱动级放大器可以提供合适的信号功率给末级功率放大器,促使末级功率放大器工作在良好状态,保证信号的有效发射。然而,目前针对较低频段如X波段的驱动级放大器的研究较多,鲜有关于Ka波段驱动级放大器的研究。因此,研制高性能的Ka波段驱动级放大器芯片对现代无线通信事业的发展具有重要意义。本文采用0.15μm InGaAs pHEMT工艺设计制作了一款面向卫星通信终端应用的Ka波段MMIC(Monolithic Microwave Integrated Circuit)驱动放大器芯片。芯片具有小尺寸、低功耗、宽频带的优点,适用于其他主流Ka波段通信系统。芯片采用单电源供电设计,内部自偏置栅极-源极电压,外部供电方便。为了实现较高的线性增益,芯片采用两级级联拓扑结构,裸片尺寸为1.7 mm×1.0 mm。芯片电磁仿真结果表明,在漏极电压为3 V的条件下,在28~32 GHz内,芯片线性增益为16.4 dB;端口回波损耗小于-10 dB;增益1 dB压缩点输出功率大于9.1 dBm;芯片饱和输出功率大于11 dBm;芯片直流功耗小于88.5 mW。芯片在常温下的测试结果显示,在漏极电压为3 V的条件下,在28~32 GHz内,芯片线性增益最大值为20 dB;增益1 dB压缩点输出功率可达11 dBm;饱和输出功率可以达到13dBm;芯片总直流功耗小于84.6 mW。本文对比分析了驱动放大器芯片测试结果与电磁仿真结果,并针对其差异产生的原因进行了分析。为了将驱动放大器芯片更好地应用于实际工程项目中,本文基于所设计的驱动放大器芯片设计并制作了一个驱动放大器功能模块。常温下模块的测试结果表明,在漏极电压为3 V的条件下,在28~32 GHz内模块的线性增益最大可达20.7dB;增益1 dB压缩点输出功率大于10.0 dBm;饱和输出功率可以达到14.4 dBm;模块总直流功耗小于90 mW。本文设计的模块性能良好,适合应用于现代各类Ka波段通信系统之中。