基于深度学习的嵌入式目标检测模型加速研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:you0tmd1234
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着基于深度学习技术的发展及其应用场景的不断扩展,各种高性能的神经网络模型已经被广泛应用到现实环境中,特别是基于深度学习的目标检测已经被广泛应用于机器人、自动驾驶以及智能家居等领域。但是神经网络模型对于硬件平台的计算能力和存储容量都有较高的要求,很难部署在资源受限的嵌入式设备上。为解决巨大的模型计算量和存储量与嵌入式设备的资源限制之间的矛盾,对模型进行压缩和加速非常有必要,并且这对于将高性能神经网络模型部署在嵌入式平台上具有重要的实际意义。因此,本文将针对SSD(Single Shot Multi Box Detector)目标检测算法进行模型的压缩和加速研究,并将其部署到嵌入式平台上。本文具体的工作内容如下:1.本文分析了基于重要性剪枝技术存在的优缺点,并在通道剪枝的基础上提出了层间关联的熵通道剪枝,缩小模型剪枝所带来的误差并提高剪枝模型的模型恢复速度。同时,本文提出使用差分进化算法进行模型结构搜索剪枝,并对目标函数、搜索空间以及进化方式进行优化,加快最优模型的搜索。通过结合层间关联的通道熵以及差分进化算法对SSD目标检测算法进行模型剪枝,在模型精度下降不超过2%的基础上实现4倍压缩,2倍推理加速。2.为进一步压缩模型以及加速推理过程,本文利用模型量化对剪枝模型进行INT8量化,将剪枝模型压缩4倍。并结合算子融合、卷积优化算法、ARM的Neon指令以及Open MP等技术设计基于ARM平台的高效量化卷积算子,实现SSD量化模型的4倍推理加速。3.将剪枝和量化之后的SSD模型以及设计的量化卷积算子移植到Android平台上,实现嵌入式平台的目标检测模型推理。综上所述,本文针对神经网络模型参数量和计算量都非常大而无法部署在嵌入式平台的问题,提出多种不同的方法对目标检测模型进行压缩和加速,并对提出的方法进行实验验证,最后将目标检测模型部署在嵌入式平台上进行推理。
其他文献
文本检测与识别的相关工作在我们的日常生活中随处可见,如身份证识别、停车场的车牌识别等,极大地方便了人们的生活。不同应用场景下文本内容形态多样,尺度差异较大,语义背景也往往不同,需针对性地设计检测与识别算法以取得更好的实操效果。本文基于民国报纸标题检测与识别这一具体中文场景任务展开,该工作有利于将纸质报纸转化成能检索能查询的数字馆藏,进而挖掘其史料价值。我们对基于深度学习的文本检测与识别工作进行研究
自主装修机器人在执行各种任务时需要在装修环境中来回移动。自主路径规划能力是一个移动机器人智能化的重要衡量因素。这要求移动机器人能够主动感知环境信息,然后利用环境信息做出导航决策。在动态环境中,移动机器人对于环境全局信息的认知是不足的,其通过传感器主动感知环境局部信息来规划自己的路径。因此,对环境信息理解和利用的能力是移动机器人实现自主路径规划的关键。本文主要的工作如下:1.使用ROS和Gazebo
微博、微信等网络社交媒体的兴起标志着自媒体时代的到来,自媒体新闻有着广阔的传播覆盖面,对自媒体新闻进行情感分析有利于了解社会公众对公共事件的整体态度和看法。目前,得益于众多电商平台完备的评价体系,商品、电影评论等领域已经有很多规范的中文情感数据集。然而对于其他非特定领域,由于缺乏相应的评价体系,数据标签的获得只能依赖成本高昂的人工标注,这就导致大量深度学习任务都普遍面临着小数据和非平衡的问题,而且
随着微电子技术、通信技术和信号处理技术的快速发展,可穿戴生理信号采集系统成为可能,并逐渐成为研究热点。一方面,如心电(electrocardiograph,ECG)、脑电(electroencephalograph,EEG)、肌电(electromyography,EMG)等生理信号的实时采集,实现了对心血管疾病、癫痫等患者的长期监护,达到了及时治疗和预防的目的,缩短了医患交互的时间和空间,降低了
过去十几年来,用户对带宽的需求一直呈指数级增长,在未来很长的时间里,这种增长趋势会一直保持。作为电信基础设施的骨干技术,光纤通信技术的进步支撑着互联网和移动互联网业务的发展,但受限于熔融光纤的非线性效应,单模光纤传输容量的理论极限大约为100 Tb/s,近几年的实验结果表明,以单模光纤为传输媒介的通信系统的传输容量,已经越来越接近其理论极限,即将面临“带宽瓶颈”。在这种背景下,空分复用技术作为突破
随着“中国制造2025”战略的逐步深化,自动化生产和智能化生产具有越来越重要的地位,作为工业基础的数控机床的重要性也在与日俱增,在航空航天领域中尤其如此。在航空制造业中,为了减轻飞机的重量,同时要保证飞机结构的高强度和较长的使用寿命,薄壁零件成为一种极好的选择,已经被广泛应用于航空制造业中。然而由于薄壁零件具有壁厚较小、体积较大、结构较为复杂等特点,数控机床对其进行加工具有较大的难度,难以保证其加
随钻测井是指测井仪器随钻头一起下井工作,在钻井的同时进行测井工作,并把测量结果实时传输至地面,随钻密度测井是其中的代表技术之一,本文的研究内容就是围绕随钻密度测井仪器展开。测井结果的实时性是随钻测井技术独特的优势,但同时也对仪器的实时数据处理能力有着很高的要求。实时数据处理包括对原始数据的计算和存储,二者在工作流程中的关联性越低,数据处理流程的稳定性越高。Flash均衡算法旨在通过一定的策略,使得
随着生物特征识别系统安全性和准确性需求的增加,指静脉识别受到广泛地研究。与其他生物特征相比,指静脉识别自带活体识别,安全性更高,使用更加便捷,因此具有重要的研究意义。随着深度学习技术的发展,指静脉识别算法的效果也在逐渐提高。特征提取是指静脉识别算法的研究重点之一,如何提取具有较好识别性的特征仍然存在挑战。为了提高特征的判别性,本文研究了一种增加特征判别性的损失函数。为了提取更多的语义信息,本文设计
数据包络分析(DEA)是一种评价包含多输入和多输出的样本之间相对有效性的方法,在确定有效以及最优得分的样本这一应用环境中,已被证明非常有效。但是,在应用的时候,此类方法存在两个问题,第一是需要人为设定权重本身或者权重的范围,这会带来了综合评价模型存在任意性的问题;第二是会产生太多的有效样本,这类结果在解释性上与实际存在偏差。本论文针对上述问题,结合回归和分类的思想,对传统的DEA模型分别进行改进。
随着移动智能设备的迅猛发展,基于深度神经网络的智能化应用丰富多样,特别在图像内容检索(Content-Based Image Retrieval,CBIR)、语音识别等领域取得了巨大的成功。数据和服务外包提供了一种经济而高效的应用部署解决方案,然而,从用户和智能分析模型提供者的角度来看,数据以及模型参数都是价值产品,如何利用云服务强大的存储计算能力,同时保障用户敏感数据和模型参数不泄露,成为智能化