论文部分内容阅读
高温氧化磨损是一类苛刻工况下材料的典型失效形式。采用高温耐磨材料制备这些工况条件下使用的零部件,成本高,其表面高温耐磨性能提高的同时,韧性往往大幅降低。表面工程方法能够在满足基体韧性的同时获得表面高温耐磨性能。但是,常规的表面工程方法都是在工件成型后的二次表面涂层制备技术,额外消耗能源,并可能引起工件变形,表面强化层难以与基体实现冶金结合,附着强度有限,制约工件性能提高。“铸渗”是将表面改性处理融合到金属部件的铸造过程中,在工件铸造成型过程中实现表面强化,已经成为提高铸钢工件高温磨损性能的有效技术之一。“铸渗”具有工艺方法简捷、不需要专用设备、生产周期短、成本低、零件不变形等优势。不仅节能降耗,而且表面渗层与基体结合强度高,是一种表面功能层与铸件-次成型的新型复合制造技术。本文以钢材热轧制生产线重要辅助装置导卫板为对象,针对其在高温环境下诱导、夹持轧制件,与高温被轧制材料相互摩擦,严重磨损破坏的特征,研究开发适合ZG45基体的耐磨、耐高温氧化的镍基合金渗层和Ni/ZrO2复合渗层负压铸渗工艺,在本工艺研究中结合常规的涂料法和膏块法的优点提出了涂膏工艺,并利用涂膏工艺制备出质量良好的表面合金及复合渗层,科技成果查新表明:在铸钢表面渗层制备中未见有采用涂膏法制备预制层的相关科技报道与专利报道;采用表面形貌分析、表面化学成分分析、表面结构分析、材料力学性能测试等多种方法,对镍基合金渗层和Ni/ZrO2复合层的表面形貌、粗糙度、相结构与成分、硬度、渗层与基体的结合强度等进行了科学表征,研究了负压铸渗渗层的形成机理;通过镍基合金渗层和Ni/ZrO2复合层的常温和高温摩擦学试验,探讨了负压铸渗镍基合金渗层和Ni/ZrO2复合层制备工艺及其对常温与高温摩擦学性能的影响;实现了负压铸渗镍基复合层在导卫板的工程应用,实际使用获得良好效果,使用寿命比原有导卫板提高2-3倍。研究发现:ZG45表面镍基合金渗层的相组成主要为Ni-Cr-Fe, Cr-Ni, FeNi, Ni B。渗层表面宏观硬度达HRC58.6,镍基合金渗层从渗层到基体的显微硬度呈梯度分布,渗层的最高硬度出现在亚表层。渗层与基体具有很好的协调变形能力,破坏时弯曲强度为80.23MPa。镍基合金渗层的体积磨损率是随着温度的升高而增加,在各个温度下,耐磨性高于基体ZG45,渗层的摩擦系数均小于基体的摩擦系数。ZG45表面Ni/ZrO2复合层的相组成主要为ZrO2、Cr2B、NiB、NiFe以及固溶体。表面宏观硬度可达HRC60-64,高于镍基合金渗层,显微硬度呈梯度变化,最高硬度出现在亚表层。Ni/ZrO2复合渗层与基体具有很好的变形协调性,出现类似屈服的现象,对应的弯曲强度为66.3MPa,比相同条件下基体的弯曲强度提高42%,渗层破坏的弯曲强度为87.6MPa。以GCr15为对偶件室温摩擦条件下,复合渗层的体积磨损仅为基体材料的4.6%;以Si3N4为对偶件不同温度条件下,随温度升高,复合渗层的磨损增大,摩擦系数降低;在各个温度下15%ZrO2渗层的耐磨性优于10%ZrO2渗层的耐磨性。高温环境下,渗层表面金属与氧反应生成氧化膜参与了摩擦过程而改变了磨损性质,同时,镍基合金渗层与Ni/ZrO2复合渗层的耐高温性能优于基体的耐高温性能,因此,高温摩擦磨损性能得到提高。高温条件下的材料的摩擦磨损性能是高温氧化与摩擦磨损的交互作用的结果。基于预制层毛细管内基体金属液流动的计算分析,提出了影响镍基渗层形成以及镍基渗层厚度的主要因素(毛细管两端的压差P、毛细管半径R、液态金属的粘度η以及金属液保持液态的时间t),提出了铸钢表面镍基渗层的形成过程物理模型,即:液态金属的渗入过程+渗层的致密化过程。镍基合金渗层的形成属于完全熔化冶金熔合机制,而Ni/ZrO2复合渗层的形成属于合金粉末冶金熔化包覆不熔陶瓷颗粒的复合层形成机制。以导卫板作为应用研究对象,开展的铸钢表面铸渗的初步应用研究试验发现:浇注温度和预制层的涂挂工艺是影响ZG45表面渗层形成以及渗层质量的主要因素,为表面铸渗技术在其它铸钢零部件上的应用奠定了基础。