【摘 要】
:
潜艇凭借其特殊的隐蔽性和机动性,获得了世界各国海军的青睐,逐步成为国家捍卫领海主权的利器。受到声呐技术的低频化的驱动,积极推进潜艇声隐身性能的研究,对增强我国现役潜艇的攻击性、隐身性及寿命有着重要意义。具有周期性空腔排布的声学覆盖层已经被广泛应用于水下航行器,以满足减小声辐射和降低结构自噪声的需求。故而设计出一系列满足某种特定工况的具有较高吸声或隔声性能的声学覆盖层具有十分重大的意义。本文以具有轴
论文部分内容阅读
潜艇凭借其特殊的隐蔽性和机动性,获得了世界各国海军的青睐,逐步成为国家捍卫领海主权的利器。受到声呐技术的低频化的驱动,积极推进潜艇声隐身性能的研究,对增强我国现役潜艇的攻击性、隐身性及寿命有着重要意义。具有周期性空腔排布的声学覆盖层已经被广泛应用于水下航行器,以满足减小声辐射和降低结构自噪声的需求。故而设计出一系列满足某种特定工况的具有较高吸声或隔声性能的声学覆盖层具有十分重大的意义。本文以具有轴对称空腔结构的声学覆盖层为研究对象,采用理论分析和数值仿真的研究手段,对声学覆盖层吸声和隔声性能的优化以及吸声和隔声机理做了详尽研究。论文介绍了空腔结构声学覆盖层吸声系数和隔声量计算的传递矩阵理论和有限元仿真技术,使用两种方法计算了材料参数、腔体大小及位置等因素对覆盖层声学性能的影响规律,两种方法计算结果吻合较好,互相验证了两种方法的准确性。提出一种优化方法,建立了表征轴对称空腔结构空腔母线形状的插值函数,将声学优化问题转化为寻找组成母线各个点的最优位置问题,使用NelderMead算法对模型的腔体结构和材料参数进行优化,采用不同的加权策略成功地将吸声和隔声曲线峰值频率移动至目标位置,进而得到了低频声学性能较好的腔型结构。研究结果表明,腔型结构的优化对有效吸声和隔声频段的低频优化效果有限,耦合材料参数优化可以拓宽吸声和隔声范围,并且可以极大改善低频声学性能。由于水下声学覆盖层的特殊工作环境,本文基于移动网格技术预测了模型在1MPa和3MPa下的声学性能,并且将不同压力工况下的隔声量仿真结果与实验值进行对比,两者吻合较好。研究结果表明覆盖层的吸声性能受腔体变形的影响大于隔声性能,常压下隔声性能优越的模型在其他压力工况下仍能保持相对优越的隔声性能,但吸声性能在较大腔体形变下则变得不可预测。最后通过绘制峰值频率下的位移模式图,对覆盖层的吸声和隔声声学机理进行了分析。吸声系数较高的频率处覆盖层空腔内的共振较为剧烈,而隔声性能较好的频段内覆盖层表层的共振较为明显,这说明空腔共振耗散是良好吸声性能的基础,而声波入射域端面的反射和空腔的耗散是影响隔声量的大小的重要因素。
其他文献
【目的】本研究旨在社会责任框架下探讨三级公立医院的职责及实施动力,包括:(1)界定公立医院社会责任及分类;(2)探讨公立医院社会责任动力机制;(3)分析三级公立医院社会责任的履行及动力现状;(4)提出三级公立医院社会责任的优化路径。【方法】1.文献研究法:通过CNKI、万方数据库、维普中文、web of Science、Pubmed等中英文数据库收集期刊、论文,通过各级卫生行政部门等收集政策动态信
ABO3型铁氧化物由于具有自旋、轨道和电荷等复杂相互作用,具备铁电性、压电性、铁磁性和反铁磁性等物理性质,在电子信息技术、存储器件和航空航天等领域具备潜在的应用价值。由于BiFe O3和SmFe O3具备极高的奈尔温度,它们在室温下仍保持反铁磁性,从而有望实现室温多铁行为。本文选取BiFe O3和SmFe O3单晶作为研究对象,研究了它们在磁性、电极化、介电、光学性质和结构等方面的性能,以及强磁场
超表面是一种人工设计的亚波长量级的二维超材料阵列结构,在调控振幅、相位、偏振等方面具有优异的性能。基于超表面阵列的透镜(超透镜)能够通过改变单元结构的几何形状精确地控制相位,从而实现聚焦和成像。超透镜在集成化和小型化方面具有显著优势,适用于紧凑型成像系统,并且在生产上与CMOS兼容。然而,超透镜在宽谱应用中会出现色差现象,即焦距随波长变化,从而影响聚焦和成像质量,因此消色差超透镜近年来成为研究热点
流固耦合是一种非线性、多物理现象,广泛存在于自然界和工程领域中。本文采用格子玻尔兹曼-有限元-浸入边界法,数值研究了两种流固耦合问题,包括软尾减阻问题,以及柔性板的拍动推进问题。本文的主要工作和结论如下:研究了“软尾减阻”问题。所谓“软尾减阻”,即在平板绕流中,通过在平板后部通过柔性丝线构造一个封闭区域(即软尾),从而达到系统整体的减阻效果。主要考察了雷诺数和柔性丝线长度等控制参数对系统动力学行为
许多聚变装置上都尝试通过偏压的方式来减小边界的湍动输运,进而对芯部等离子体的约束产生影响。J-TEXT托卡马克装置上同样开展了许多偏压电极的相关实验,发现偏压电极在改善等离子体约束和控制不稳定性有着很好的效果。然而,偏压电极工作时需要将外部的石墨电极伸入到等离子体中,这样不可避免的会引入额外的杂质源,因此,需要探索能够在不增加杂质源的前提下,控制边界电场从而抑制等离子体边界输运及改善约束能力。在等
溶解性有机物(DOM)在水环境中几乎无处不在。在太阳光照射下,DOM产生激发三线态(~3DOM*)、单线态氧(~1O2)、羟基自由基(·OH)等活性物质,对水体微量污染物迁移转化具有重要作用。UV254消毒和高锰酸钾氧化是水处理过程的常见工艺。DOM经过UV254消毒和高锰酸钾氧化后其结构组成、分子量、官能团等理化性质会发生改变,进而可影响DOM光致活性物质的生成。但是,这两种水处理工艺对DOM光
由于化石燃料不可再生且排放的温室气体对环境产生不利影响,氢能作为绿色能源之一,具有丰度高、可再生、燃烧值高、产物清洁无污染的优点。电化学分解水制氢具有较快的速率且没有多余副产品。目前最先进的催化剂是Ir O2或Ru O2作为阳极,Pt作为酸性环境中的阴极。然而贵金属催化剂价格高昂、资源稀缺。所以,有效利用地球上丰富的非贵金属电催化剂作为不同组合的纳米结构在水的分解中是取代贵金属用于制氢工业化的核心
引言自从尺寸稳定阳极(DSA)发明以来,对氯碱电槽的各组成部分引起了迅速的连锁改革。例如在槽型结构方面向着结构更紧凑省料节电的复极式槽发展,在隔膜选择方面采用磺酸基、羧酸基、或磷酸基的全氟阳离子交换膜,这样使氢氧化钠生产提高到崭新的水平,浓度可以
目的:开发一种负载生长因子的可注射温敏性水凝胶,植入半月板损伤部位,促进损伤半月板的修复。方法:制备质量比m(HPCH):m(HA)=12:1的HA/HPCH水凝胶,水凝胶的质量体积分数为2%(m/v),水凝胶中加入100ng/ml的TGF-β1。各组水凝胶的sol-gel转变温度采用瓶倒转法来测定;各组水凝胶的体外降解情况采用剩余质量称重法来检测;用扫描电镜拍摄各组水凝胶的形貌表征;培养MFCs
新疆地区煤炭资源储量丰富,将新疆打造成为我国的重要能源基地,已被提升至国家级战略高度。独特的成煤环境导致多数新疆煤具备高碱/碱土金属的特征,从而导致其在燃烧过程中面临着严重的灰沉积相关问题。因此,针对新疆煤的灰沉积进行防控研究具有重要实际意义。研究表明添加剂及混烧可有效缓解煤的沾污、结渣问题,但以高岭土等为代表的矿物添加剂由于成本较高,很难实现工业应用。稻壳灰等生物质灰中含有大量的硅,属于潜在的优