论文部分内容阅读
带有明显屈服应力的假塑性流体是非牛顿流体的一种,除了具有较高的粘度之外,还表现出复杂的流变性,比如剪切稀化行为和带有初始屈服应力等。这类流体在进行混合操作时,在搅拌桨附近会形成洞穴,洞穴内部流体充分流动,混合均匀,但在桨叶之外的主流区流体却处于停滞或缓慢流动状态,这将极大影响混合效率并可能伴随副产品的产生。为此,本文以错位六弯叶涡轮桨为研究对象,采用数值模拟与实验验证相结合的方法,针对其在假塑性流体中的洞穴效应和演化规律进行研究,为高效搅拌装置的研究和应用提供理论参考。本文首先利用流变仪对不同浓度的黄原胶水溶液的流变参数进行测试,结果表明,其切应力与剪切速率的关系符合Herschel-Bulkley模型,进一步通过非线性拟合的方法获得了模型中各项参数的值,为后续粘度模型的建立提供了数据支撑。为检验所建立层流模型的正确性,从功耗与流场结构两个方面对模拟结果和实验数据进行比较,发现CFD模拟结果与实验数据能很好地吻合,说明通过本文建立的层流模型获得的结果是可靠的。通过研究黄原胶水溶液表观粘度在搅拌槽径向的变化规律,提出了确定洞穴边界的新方法——屈服粘度法,即洞穴边界处流体的粘度值应为流体屈服粘度的25%。进一步研究表明,屈服粘度法不受转速和桨型的影响,预测的洞穴边界准确度更高,更能体现边界的发展趋势,并且在高转速下也不会失真,与速度法相比具有明显优越性。基于轴向力洞穴模型,建立了心形洞穴模型来预测流场中的洞穴,并将各模型的预测结果与CFD模拟获得的洞穴形状进行了比较。对比发现,在较低雷诺数时,心形模型确定的边界曲线与CFD结果最接近,圆柱形模型忽略了洞穴顶部过渡段和底部的特殊变化,球形模型预测的洞穴过大,而环形模型预测结果明显偏小;在雷诺数逐渐增大时,心形模型始终保持着对洞穴边界预测的准确性,边界曲线能与CFD模拟曲线很好的吻合,圆柱形模型对洞穴的预测逐渐偏小,球形模型对洞穴的预测始终偏大且过早的估计了边界的触壁时间,而环形模型对洞穴的预测过小,此时更适于描述洞穴的核心区。