【摘 要】
:
超透镜,作为超表面的相关应用之一,近年来引起了一股研究热潮,受到了各领域学者的广泛关注。超透镜是由人工设计的纳米单元所构成的二维平面结构,通过改变其几何参数和排列方式,就能够对入射光在亚波长的范围内实现任意相位调制,其灵活的相位调制能力,使超透镜拥有传统的光学透镜所不具备的功能。为了研究超透镜在混色、彩色全息等方面的应用,本论文基于导模共振原理、几何相位原理以及消色差原理设计出了包括消色差超透镜在
论文部分内容阅读
超透镜,作为超表面的相关应用之一,近年来引起了一股研究热潮,受到了各领域学者的广泛关注。超透镜是由人工设计的纳米单元所构成的二维平面结构,通过改变其几何参数和排列方式,就能够对入射光在亚波长的范围内实现任意相位调制,其灵活的相位调制能力,使超透镜拥有传统的光学透镜所不具备的功能。为了研究超透镜在混色、彩色全息等方面的应用,本论文基于导模共振原理、几何相位原理以及消色差原理设计出了包括消色差超透镜在内的多种超透镜,主要研究内容如下:提出了输出波长可调的高透过率的滤波结构,实现了可见光波段内任意波长的输出。基于导模共振原理,设计了以铝材料作为光栅,二氧化钛材料作为波导层,氧化铝材料作为铝光栅的保护层和二氧化硅材料作为基底层的滤波结构。该结构可以通过调节光栅周期,实现可见光范围内的任意波长光的高透过率输出。设计了三基色的高数值孔径的超透镜,实现了焦点处衍射极限聚焦。在可见光波段下,选择了二氧化钛材料作为超透镜的基本单元,将其依次排列在由二氧化硅材料所构成的基底层上,并优化了单元结构的尺寸。基于几何相位调制原理,通过调节纳米鳍的方位角,实现了0到2π的相位调制深度和0.85的数值孔径。提出了高数值孔径的消色差超透镜,实现了入射的可见光的衍射极限聚焦。将基于导模共振的高透过率的滤波结构与三基色的超透镜相结合,设计了消色差超透镜,实现了三基色光的消色差聚焦。消色差超透镜采用分区结构设计,在不同区域对三基色光进行滤波与聚焦。仿真结果显示该消色差超透镜能实现衍射极限聚焦,其数值孔径为0.85,聚焦效率为34%。
其他文献
近年来,随着生物数学的发展,捕食者-食饵模型的动力学性质已经成为众多学者关注的问题。在捕食者-食饵模型中引入适当的功能反应函数、时滞、扩散以及非局部竞争项等可以更好地描述种群的动力学行为。本文将讨论一类具Holling-Ⅲ型功能反应的捕食者-食饵模型,分别研究不具非局部竞争项和具非局部竞争项模型的动力学性质。一方面,分析不具非局部竞争项捕食者-食饵模型的动力学性质。首先,讨论不带时滞和扩散模型的平
细菌在自然界中扮演者十分重要的角色,它维系着各种平衡,而在人体内诸如肠道、皮肤等器官中细菌的存在更是帮助我们完成各种生理生化功能,帮助我们完成仅靠我们自己无法完成的事。而另一方面,细菌中的一类致病菌也会引起我们的疾病,即使抗生素的出现对抗了这类致病菌的致病能力,但随着细菌耐药性的出现,抗生素效果也会大打折扣。因此一种天然的对抗细菌的生物——噬菌体,就逐渐出现在人们的视野中,通过对噬菌体的改造,可以
编码组蛋白赖氨酸去甲基化酶的基因KDM5D是位于于哺乳动物Y染色体上,它能够编码具有Jmj C结构域的组蛋白去甲基化酶。此外,KDM5D能够特异性作用于H3K4me2及H3K4me3的甲基残基。国内外研究发现KDM5D基因与胚胎发育,神经性疾病,肿瘤发生均有密切联系。KDM5D在人的肾癌,胃癌以及前列腺癌细胞中起到抑制作用。然而,KDM5D参与个体发育方面的研究较少,具体调控机理尚不清楚。本研究以
磁重联发生时,磁力线的拓扑结构发生改变的同时,储存在磁场中的能量快速地转化为等离子体的动能和热能。研究表明,空间及地面实验中的许多能量爆发现象均与磁重联相关。在地球磁层中,磁层顶磁重联是太阳风-磁层之间动量和能量输运的重要途径,而且磁层顶磁重联会进一步促进磁尾磁重联的发生,被认为是引起磁暴、地磁亚暴等重要空间天气现象的主要原因。此外,在磁约束核聚变装置托卡马克中,普遍存在着由磁重联引起的各种不稳定
随着X射线聚焦望远镜尺寸增大,传统电铸镍的力学性能已无法满足需求,具有更高机械强度的电铸镍钴合金成为代替电铸镍金属的首要选择。然而,电铸镍钴合金过程中产生的高内应力容易导致镜片变形。本文采用实验与算法结合的方式探究最佳镍和镍钴合金电铸工艺、通过不同表征手段研究内应力和结构变化规律、运用Comsol软件模拟工程电铸过程,为调控镜片内应力提供实验依据和电铸模型。研究了氨基磺酸体系中氨基磺酸钴含量、电流
能源和人们的生活息息相关,化石燃料的不可再生性和带来的环境问题促使着对新能源的探索,利用太阳能产氢成为了研究热点。同时,传统的工业合成氨工艺也有着高能耗、高污染的弊端,电催化产氨可以极大改善这种情况。设计或合成良好的催化剂无论是对光催化产氢还是电催化固氮而言都是首要问题。单层三氧化二铬(Cr2O3ML)具有成本低、比表面积大、储量大、可设计性强等优点,是一种很有前途的催化剂材料。本文以单层Cr2O
生命起源问题一直是世界性的难题。研究生命起源能帮助我们了解生命起源的时间、地理环境和气候条件、物质和热量的转换形式、新陈代谢的本质、遗传变异、自我复制等生理现象,指导我们未来的科技发展,促进人类科技的进步。三羧酸循环是一种中央合成代谢生化途径,其起源被认为可以追溯到地球化学,远在酶、RNA或细胞出现之前,其印记紧密地嵌在核心代谢的结构中。因此研究生命起源前三羧酸循环过程中物质之间的非生物传递的合成
异化铁还原菌是一种能够以胞外不溶性铁矿物为最终电子受体进行厌氧代谢,并获取能量用于自身生长繁殖的微生物,该代谢方式被称为铁呼吸。不同于传统的呼吸形式,铁呼吸代表了一种新型的代谢方式——胞外呼吸。从1987年第一株异化铁还原菌分离至今,微生物将胞内代谢有机物产生的电子跨膜运输传递到胞外不溶性电子受体的代谢形式便备受关注,继而不同的异化铁还原菌被分离出来。本研究以海洋铁腐蚀产物的厌氧富集培养物为接种物
当高度聚焦的激光作用到物质上时,动量的传递促使物体受到来自非均匀光场的光力,从而可利用光力实现对物体的悬浮和旋转,优点是无接触操作。以往人们对光致旋转的研究大多在水和空气中进行,而本文则是在真空的背景中开展研究,在真空中,极低压强的环境能大大降低环境与物体的摩擦,同时避免外界环境的干扰,利用真空光镊中的圆偏振光束能驱使物体高速旋转。基于光源、粒子与真空环境这三个部分相互作用的复杂机制,论文分步研究
随着复杂系统的复杂程度不断提高,针对复杂系统的性能评估已经成为系统整体研发流程中的重要环节。由于复杂系统的研制周期长、试验费用高,导致系统无法进行大规模的实际性能测试,使得真实的试验数据呈现出小子样的特征。同时随着计算机仿真技术的不断发展,在复杂系统性能评估中可利用的仿真数据呈现出多种来源的特征。因此,针对多源小子样试验数据,开展了对系统性能评估方法的研究,为多源小子样试验数据的性能评估提供方法和