论文部分内容阅读
同所有的干涉仪一样,光纤陀螺对温度敏感,由于其基本的互易结构,即使对较低程度温度,也比大部分干涉仪敏感。在光纤陀螺中,沿光纤敏感环温度的不均匀变化会在输出信号中引入一个漂移,被误认为旋转速率的变化。尽管很多工程方法用来抑制Shupe效应,例如特殊的绕环方案等,但并没有构成一个完美的解决方法,而且还增加了复杂性和成本。这一效应仍然是目前引起光纤陀螺漂移的主要因素,并且其极大地阻碍了光纤陀螺在导航上的应用。因此,我们需要对这一问题做进一步深入分析,从另外的研究方向寻找解决该问题的突破点,并且迫切需要提出一种新的方法来抑制温度效应对光纤陀螺的影响。光子晶体光纤的发展,特别是保偏光子晶体光纤的发展与研究为光纤陀螺解决环境适应性问题提供了全新的思想。对比传统光纤,光子晶体光纤具有灵活的设计自由度、低温度和压力敏感性以及低弯曲损耗等特性。光子晶体光纤的发展和应用为光纤陀螺的研究提供了广阔前景,令其在减小光学噪声、进一步缩小陀螺体积、提高陀螺温度稳定性和精度等方面,具备传统光纤陀螺所无法比拟的优越性。论文以光纤陀螺的温度漂移特性问题为切入点,从抑制光纤陀螺温度效应研究课题体系出发,在基础研究层面上,开展光纤陀螺温度效应机理与抑制新方法的研究。主要包括以下几个方面:(1)鉴于光子晶体光纤众多优点,论文提出采用光子晶体光纤制作光纤陀螺敏感环用以改善光纤陀螺温度效应的新思想。从温度效应产生机理出发,深入、细致的分析了光纤中的Shupe效应。理论推导了光场在光子晶体光纤中的传输模型,分析了温度场对实芯光子晶体光纤的影响。并对光纤敏感环温度分布模型和光纤陀螺温度噪声进行了深入分析与研究。(2)针对光纤陀螺发展中遇到的问题,论文分析并给出了光纤陀螺对保偏光纤的性能要求。通过对保偏光子晶体光纤的各类性能的细致分析,充分验证了保偏光子晶体光纤在解决光纤陀螺环境适应性问题上的优势。鉴于光纤陀螺对光纤性能的不同需求,论文提出光子晶体光纤模场、非线性、有效折射率和双折射等性能的优化设计方法,并对这些方法进行了分析与论证。(3)光纤敏感环是光纤陀螺最重要的光学器件之一,也是受温度效应影响最大的器件,因此,论文深入剖析了温度梯度、压力、电磁干扰等对光纤敏感环性能的影响,探讨了光子晶体光纤敏感环缠绕方式,分析并给出了非理想绕制过程中引起的相位误差。之后,提出了保偏光子晶体光纤陀螺的整体结构,利用琼斯矩阵建立了各光学器件的理论模型及保偏光子晶体光纤陀螺的理论模型。分析并给出了保偏光子晶体光纤陀螺的相位调制及闭环处理方案。给出了保偏光子晶体光纤与传统保偏光纤的熔接技术和保偏光纤定轴技术。(4)论文对保偏光子晶体光纤敏感环和传统光纤敏感环进行了温度对比实验,并对光子晶体光纤陀螺进行了常温和变温情况下的温度实验,实验验证了保偏光子晶体光纤具有较强的温度稳定性,以及保偏光子晶体光纤陀螺在抑制陀螺温度效应、提高陀螺稳定性及提高陀螺精度方面的潜在优势。为进一步抑制保偏光子晶体光纤陀螺中的温度效应,论文提出温度补偿和陀螺结构优化等方法,不仅设计出模场匹配性好的新型保偏光子晶体光纤结构,还设计出光纤敏感环拆卸装置。