论文部分内容阅读
反常扩散方程能够很好的刻画反常动力学的机制,包括空间幂律分布的扩散以及时间长程相关的扩散;因此吸引着各个领域的工作者去建立和研究反常扩散方程.确定性的方程能够呈现事物发展的主要规律,然而宇宙中的随机扰动无处不在,因此想要更全面的刻画事物的发展规律,学者们引入噪声项以刻画随机扰动.于是,随机微分方程的理论研究和数值研究也盛行起来.当方程中含有非局部算子和噪声项时,理论研究和数值研究会变得更具有挑战性;噪声的复杂程度也给研究带来了困难,如tempered高斯噪声.基于这些问题,本文将研究反常扩散方程的数值方法,以及随机分数阶偏微分方程的解正则性和数值逼近.本文由六章构成.第一章,简要地叙述反常扩散方程和随机分数阶偏微分方程研究意义及研究现状;详细说明本文的研究内容及创新之处.第二章,我们介绍了一些预备知识,包括分数阶拉普拉斯算子的定义、分数高斯过程、分数高斯过程的几种模拟方法并通过比较选出最合适的模拟方法.第三章,我们研究了控制tempered分数布朗运动概率密度函数的二维Fokker-Planck方程的数值格式.数值格式的主要挑战来自于时间在0时刻的奇异性.当0<H<1/2时,我们通过变量替换(?)(t2H)=2Ht2H-1(?)t消除了数值计算在0时刻的奇异性;这种形式的变量替换自然的导出了一个不均匀的时间离散格式,而且显著地提高了计算效率.对于H>1/2,为了保证计算的有效性和计算效率,我们引入了时间跨度相关的数值格式和非均匀时间离散化.通过傅立叶方法证明了数值格式的稳定性和收敛性.数值模拟相应的Fokker-Planck方程,我们获得了随机过程的均方位移,它符合tempered分数布朗运动的特征.第四章,非对称tempered分数阶拉普拉斯是各向异性的tempered Levy过程Xt的无穷小生成元,这一章我们研究了Xt的首次退出和非对称tempered分数阶Dirich-let问题.首次退出位置|XτD |和首次退出时间τD所有阶矩的上界被获得.我们发现| XτD|或τD的概率密度函数随|XτD|或τD的增加指数衰减;并且E[τD]~|E[XτD]|,E[τD]~E[|XτD-E[XτD]|2].因为 Δmα/2,λ是各向异性的 tempered Levy 过程Xt的无穷小生成元,因此我们导出了非对称tempered fractional Dirichlet问题的Feynman-Kac representation.此外,通过平均大量的随机过程的轨迹,我们获得了 Dirichlet问题的数值解.第五章,我们讨论了具有tempered分数高斯噪声的分数阶扩散方程.分数阶扩散方程控制subordinated killed布朗运动的概率密度函数.波动的外部源由tempered的分数高斯噪声表示,并且具有局部性.我们首先建立了无穷维tempered分数布朗运动的随机积分的正则性,然后建立了随机分数阶扩散方程的温和解的正则性.本章中,我们采用谱Galerkin方法进行空间逼近,之后将系统转化为一个等价形式,该等价形式比原系统在时间上具有更好正则性的.然后,我们使用半隐式Euler方法离散等价形式的时间导数.根据时空误差分裂技术,我们获得了均方L2-范数意义下的全离散格式的误差估计.大量的数值实验证实了理论估计.第六章,一个subordinated killed布朗运动的无穷生成元(分数阶拉普拉斯)被用来捕捉波传播的幂律衰减性质.这一章,我们研究了以分数阶拉普拉斯为空间算子的随机波方程的数值格式,其噪声项为无穷维布朗运动或分数阶布朗运动.首先,我们建立了随机分数阶波方程温和解的正则性.然后采用谱Galerkin方法进行空间半离散逼近,通过对无穷维高斯噪声的后处理,提高了空间收敛速度.在时间方向上,当温和解的时间导数在均方Lp-范数意义下有界时,我们提出了一种改进的随机trigonometric方法,得到了比现有结果更高的强收敛速度,即时间收敛速度大于1.特别地,我们所提供的方法的时间离散误差收敛速率可以达到2阶,但需要对温和解有一些额外的正则性要求.最后通过数值实验验证了理论误差估计.第七章,总结本文以及展望未来工作方向.