【摘 要】
:
热防护结构设计是飞行器热管理的关键,是研制高超声速飞行器过程中的主要瓶颈。当飞机器高速飞行时,飞行器表面的温度会大幅度升高。同时机体内部的电子和电气设备要求工作温度不超过85℃,以保障飞机内部设备的正常工作。如此高的温差将给飞机热防护带来严峻挑战,现有的热防护结构设计准则与隔热材料已不能满足可重复使用设计要求,因此研制高性能热防护结构变得极为迫切。针对热防护结构的需求,对轻质防隔热一体化结构的强度
论文部分内容阅读
热防护结构设计是飞行器热管理的关键,是研制高超声速飞行器过程中的主要瓶颈。当飞机器高速飞行时,飞行器表面的温度会大幅度升高。同时机体内部的电子和电气设备要求工作温度不超过85℃,以保障飞机内部设备的正常工作。如此高的温差将给飞机热防护带来严峻挑战,现有的热防护结构设计准则与隔热材料已不能满足可重复使用设计要求,因此研制高性能热防护结构变得极为迫切。针对热防护结构的需求,对轻质防隔热一体化结构的强度和刚度进行了有限元模拟,确定了防隔热结构的形式及材料种类。在此基础上,设计了轻质高效热防护结构的构型,采用ABAQUS软件对热防护结构构型进行热力耦合计算,分析了其连接形式,设计了高效被动热防护结构的构型。根据有限元模拟的结果,确定了轻质硅基隔热材料体系。采用火焰喷吹法制备了高硅氧微纤维棉,获得了直径更细、导热系数更低的纤维单丝。通过控制酸处理工艺过程中的盐酸质量浓度、酸沥滤时间和温度等工艺参数,获得了最优的工艺参数,确保此工艺条件下高硅氧微纤维棉中氧化硅的含量最佳。通过调节打浆时间,并在浆料中添加一些性能更好的纤维棉A,降低了毡的密度,获得了轻质纤维棉。研究了气凝胶/硅基纤维复合材料的合成工艺,探讨了前驱体对气凝胶复合材料理化性能的影响。研究发现,采用正硅酸乙酯(TEOS)可以实现对气凝胶制备工艺的调控。通过二次凝胶老化处理工艺可以改善凝胶网络结构的交联程度,进而提高隔热性能。为了获得整体性能优异的大尺寸气凝胶复合材料,对超临界干燥工艺进行了优化。提出了轻质硅基隔热材料的评价方法,利用该方法评价了高硅氧微纤维毡和二氧化硅气凝胶的隔热材料性能,给出了高硅氧微纤维毡和二氧化硅气凝胶/硅基纤维复合材料的中温长时和高温短时的使用工况条件下的隔热性能。合成了低密度高硅氧微纤维棉毡和二氧化硅气凝胶/硅基纤维复合材料,提出了隔热材料隔热性能的测试方法,系统测试了硅基隔热材料的隔热性能。对轻质高效被动热防护结构的效能进行了评价。基于热防护结构构型的热力耦合计算结果,研究了胶接和机械连接方式的可靠性和隔热效能,并对外部放整块气凝胶/硅基纤维复合材料构型的蒙皮材料、连接件材料、隔热效能及连接形式等进行了验证。基于等效密度原则,对轻质硅基热防护结构的隔热性能进行了分析,给出了满足使用要求的板厚、质量、温度和时间等技术指标,确定了增重最小的构型方案。构建了人机界面友好的热防护材料体系数据库,该数据库方便科研人员查询各种隔热材料的隔热性能,提高科研工作的效率。建立了轻质高效热防护构型数据库,该数据库可实现材料筛选、温度-时间曲线、构型信息查询等功能,指导热防护结构设计,并为后续相关研究提供技术支撑与指导。
其他文献
气相燃烧过程包含复杂的反应网络和化学反应类型。随着计算能力的提高及高精度电子结构方法快速发展,理论模拟手段逐渐被广泛用于燃烧基元反应动力学研究,这其中包括利用高精度电子结构方法构建反应体系势能面,以及在构建的势能面基础上结合相关统计理论进行包含温度/压力的化学反应速率常数计算,利用动力学方法研究反应的微观动态行为等。一方面,对于只涉及单一电子态(通常为基态)的电子绝热反应过程,经典过渡态理论(TS
偏高岭土(MK)是高岭石类粘土在500-800℃下煅烧1-3 h后,经脱羟基衍变而成的一种活性材料,适当研磨后具备超高的比表面积和优异的活性。MK在制备过程中只释放水蒸气,对环境无污染,且能源消耗低,是一种低碳环保的绿色活性材料。超高性能混凝土(UHPC)是近些年新兴的一种极具创造性的水泥基材料,具有超高的力学和耐久性能。但是UHPC存在制备成本高和水泥利用率低等缺点,使其在工程中的应用受到一定程
为了解复杂地形条件下天顶对流层延迟(ZTD)特性并研究其精细化建模,采用四川省56个CORS站的数据,解算其高精度ZTD并对3种不同ZTD模型的精度进行评估,分析了ZTD时空分布特性受地形条件、季节因素的影响。基于ERA-Interim再分析数据建立了区域ZTD格网模型及其精化方法。实验结果表明:1)ZTD随地形分布的变化幅度大,模型的偏差分布也呈现出显著的不一致性,其中Saastamonien模
实际沥青路面中水分扩散行为的普遍性、长期性和隐蔽性使得服役于自然环境中的沥青路面材料不可避免的受到水分扩散侵蚀作用,由此造成的沥青混合料力学性能劣化和耐久性衰减问题不可忽略。水分通过扩散作用进入混合料内部后,与组分材料长期作用造成不同尺度水损伤行为。纳观尺度下水-沥青-集料分子相互作用,改变沥青-集料分子间非键势能,引起体系纳观结构变异;微观尺度下含水纳观结构演化造成胶浆-集料界面及体相流变性质劣
动静压气浮轴承以其摩擦小、精度高、无污染等优点,被广泛应用于高速/高精度加工领域。而以动静压气浮轴承为支撑系统的高速/高精度动静压气浮主轴作为超精密机床的核心零部件,是超精密机床实现超高精度加工的根本基础。然而,动静压气浮轴承还存在刚度较低,承载能力不高和容易失稳等问题,这些问题制约了动静压气浮主轴在高效、稳定、可控和工业化的超精密加工领域的应用。因此,围绕动静压气浮主轴动静态性能的理论分析及动静
基于掺杂氧化镁周期性极化铌酸锂(periodically poled lithium niobate crystal doped Mg O,PPMgLN)晶体的非线性频率变换的激光器能够满足军事光电对抗对于轻量化、结构紧凑的高峰值功率3~5μm中红外固体相干光源的迫切需求,但目前受晶体尺寸、损伤阈值以及晶体对长波长中红外激光吸收等因素的限制,PPMgLN中红外激光器的体积和峰值功率分别有待于缩小和
钠离子电池,因钠资源的储量丰富,分布广泛和成本低廉,已经成为极具潜力的下一代廉价高效储能电池体系。在众多的钠离子电池负极材料中,转化-合金型负极材料由于具有非常高的比容量,是高性能钠离子电池的理想负极材料。然而,因其嵌脱钠过程中发生的较大体积变化,极大降低了电池的循环稳定性。同时,钠离子较大的半径,使得该类材料表现出迟缓的电化学反应动力学,导致电池倍率性能变差。本文针对转化-合金型负极存在的缺点,
航天器是人类探索宇宙,执行空间任务的载体。航天器动力学与控制的研究有助于航天器在空间中平稳可靠的运行,在航天技术发展中起到关键的作用。其中,航天器交会的成功是许多航天任务的先决条件,姿态控制系统直接影响着航天器在轨运行的稳定。随着空间任务的多样化,航天器面临极端的空间环境、日益复杂的结构特性、输入受限、时滞以及时变特征等问题。对这些问题认识的不足会导致航天器控制性能下降或失效。因此,基于这些问题的
在金属塑性变形过程中,塑性变形区的速度场分布可以揭示金属的塑性流动规律,对塑性加工过程的工艺流程制定和参数优化有着重要的理论指导意义。而众多传统解析法所确定的速度场通常是具有不唯一性的动可容场,制约了金属塑性流动理论在速度场求解中的应用。鉴于此,本文研究了基于晶体学物理背景的转动率连续理论所对应的速度场特点。以“扩展滑移”机制发生塑性流动的刚塑性体内部的滑移晶面与其最大剪应力面保持平行,此时转动率
光纤传感技术经历了30年的高速发展,已经广泛应用于现代社会的各个领域,其中应用于惯性导航的光纤陀螺仪和水下声信号探测的光纤水听器是高性能光纤传感器的典型代表,这两种传感器的结构中光纤被绕制成环以增加探测灵敏度和减小体积。但是,受绕制工艺和材料等因素的限制,光纤环的应变、温度和双折射的不均匀分布会引入光学非互易性,最终限制了光纤环的工作性能。因此,研究不同工艺和材料光纤环的应变、温度和双折射等参量的