Chan-Lam偶联聚合反应和Sonogashira脱羧偶联聚合反应研究

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:zhuangjun_1988
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
先进功能高分子作为一类具有独特的物理或化学特性的新颖材料,已被广泛应用于光物理学、生物医学、材料科学、纳米科学等多个领域中。目前已开发的用于制备功能高分子材料的聚合方法存在原料成本昂贵、单体合成复杂、反应条件苛刻、反应选择性差、副产物对环境造成污染等缺点,从而限制了功能高分子材料的进一步开发和应用。因此,开发出简单高效、条件温和、绿色环保、选择性高、适用范围广的聚合方法是推动功能高分子材料发展的关键。由于有机合成领域存在许多发展成熟的高效有机小分子反应,若能将这些有潜力的小分子反应发展成新型的聚合方法,将对高分子材料的发展具有重大意义。本文基于小分子Chan-Lam偶联和Sonogashira脱羧偶联反应,发展了两类新型的聚合反应,即Chan-Lam偶联聚合反应和Sonogashira脱羧偶联聚合反应,并将其成功应用于具有聚集诱导发光性质的功能高分子材料的构建中。首先,本论文基于Chan-Lam偶联反应,开发了一类新型的构建碳-氮键的聚合反应——Chan-Lam偶联聚合反应。该聚合反应在氯化亚铜催化下,以多种磺酰叠氮类和芳基硼酸类化合物为单体,以甲醇为溶剂,在室温下发生聚合,以良好的产率(最高达82%)和分子量(重均分子量高达11400)制备了一系列聚磺酰胺类衍生物。该反应适用于多种不同结构的单体,所得聚合产物具有良好的溶解性和热稳定性,其中聚合物P1b/2f具有良好的成膜性和独特的聚集诱导发光性质,通过溶液旋涂法将P1b/2f制备成均匀的薄膜,并成功应用于光刻图案的制作中。其次,基于Sonogashira脱羧偶联反应,本论文还开发了一种的新型的构建碳-碳键的聚合反应——Sonogashira脱羧偶联聚合反应。该聚合反应在四(三苯基膦)钯催化下,以1,8-二氮杂双环[5.4.0]十一碳-7-烯为碱,以芳基二溴化物和丁炔二酸为单体,以N-甲基吡咯烷酮为溶剂,在110℃下发生聚合反应,以较高的产率(在71%至86%之间)和分子量(重均分子量最高达18700)制备了一系列聚苯乙炔类衍生物。该反应具有良好的单体适用性,所得聚合物具有优异的热稳定性(热分解温度在317℃至405℃之间)和良好的溶解性。其中由于聚合物P3a/4有良好的成膜性和聚集诱导发光性质,通过溶液旋涂法将P3a/4制备成了均匀的薄膜,并应用于制作荧光光刻图案。
其他文献
随着科学技术和制造水平的迅速发展,磁性材料及器件被广泛应用于国防技术、航空航天、微机电系统和信息存储等多个领域。SmCo作为一种高性能稀土永磁材料,是非易失性热辅助磁记录介质的理想候选材料,其以薄膜形态沉积在元器件上提供强的局域磁场也可以满足磁功能器件集成化和微型化的要求。然而SmCo基薄膜存在相组成复杂、磁各向异性不易转变等问题,不利于其在磁功能器件上实现广泛应用。基于此,本文通过引入外场(温度
与传统刚性材料相比,柔性电子材料具有可变形性,与柔性物体、弯曲表面的贴合性好等优势而备受关注。其中,与人类活动息息相关的柔性可穿戴材料主要包括可穿戴传感器、柔性电路以及可穿戴储能器件等功能化模块,实现这些模块的全柔性化有利于实现真正意义上的柔性可穿戴。聚吡咯(PPy)作为导电高分子具有柔性好、成本低、制备过程简单等优点,在功能材料领域具有广泛的应用。本论文利用PPy界面聚合加强其与柔性基底的相互作
随着第五代通信技术的全面商用,对高容量、高速率的光纤通信网络需求不断增加,作为现代光纤通信网络中的重要组成部分,光纤放大器的增益带宽是影响通讯容量的一个重要因素,但由于Er3+离子的窄带发光,光纤放大器的增益带宽受到了限制。目前,各类光放大器还难以取代掺铒光纤放大器应用于实际光纤通信网络中。可实现宽带光放大的增益介质材料中,过渡金属离子掺杂发光材料和Bi离子掺杂发光材料的近红外发光较宽,但发光效率
随着海洋强国建设的不断推进,水声通信的应用范围也得到了扩展。传统低速率传输的水声通信技术已难以满足信息需要实时处理的领域,实现高速率的水声通信传输技术变得非常重要。超奈奎斯特(Faster Than Nyquist,FTN)技术可以打破奈奎斯特准则,使系统获得更高的传输速率,但会引入额外的码间串扰(Inter Symbol Interference,ISI),再加上水声信道的强时变多径效应,会导致
随着人们认识到可再生能源的重要性以及其作为未来主要能源的巨大发展潜力,可再生能源在微电网中的渗透率不断增加。但可再生能源发电系统的间歇性、随机性和不可预测性等特点导致其在接入微电网时,会出现输出功率与负荷需求不匹配的情况,影响直流微电网内的功率平衡,造成直流微网无法稳定运行。目前解决上述问题最有效的技术手段是在微电网中部署储能系统,通过储能系统吸收/释放不平衡功率维持网内整体的功率平衡。混合储能系
化石燃料日益枯竭和环境污染不可避免地威胁着世界的发展和经济的增长。微藻被认为是生产第三代可再生生物燃料的原料,以其优良的生物油生产能力,有望解决未来能源短缺的问题。近年来我国城市生活垃圾产生量增长迅速,处理不当不仅会对生态环境造成危害,而且会浪费了其应用于能源生产的潜力。热解技术可以实现垃圾减量化、资源化和无害化的处理目标,并且具备比其他热化学反应更高能量回收效率。为了获得品质更高的生物燃料,垃圾
有机半导体材料具有结构多样、功能集成、合成便捷以及光谱易调节等诸多优点,在有机电致发光、有机太阳电池以及有机场效应晶体管等领域都有着广泛的应用。从有机半导体分子能量转移过程可知,基态电子会吸收能量会跃迁至激发态,而激发态是一种并不稳定的高能量状态,电子会通过内转换、系间窜越、非辐射跃迁等方式重新回到基态。在这之中的非辐射跃迁方式会使能量以热能的形式散失,并不利于提高有机电致发光和有机光伏器件的性能
随着现代社会电子通讯产业的快速发展,电磁辐射污染问题日益严重,因此对高性能吸波材料的开发应用更加迫切。然而,传统的吸波材料在吸收强度、吸收带宽、厚度、密度、耐用性等方面有所不足,难以满足吸波材料在更广泛领域的应用需求。因此,有必要研发新型吸波材料,从而实现吸收强度高,吸收频带宽,厚度薄和质量轻的技术目标。MXene是一种新型的二维层状材料,具有良好的金属导电性、亲水性、结构可设计性等特性,是当前最
纤维增强聚合物因具备聚合物的高流动性和玻璃纤维的高强度,而被广泛应用于电子设备、汽车零件、日常消费等国民经济领域。开口结构件指中间开口、两侧悬空的“U”形的一类基础零件,是固定轮轴及承载重力的关键结构件。注塑成型时往往在产品的U形拐角位置产生一个较小的翘曲变形,该变形就会被两侧结构所放大,在产品两侧末端产生较大的位移偏差,导致产品尺寸严重超差。为了保证结构的强度,开口结构件一般使用强度较高的玻璃纤
冷链物流行业随着我国经济增长和人民生活水平提高而蓬勃发展,因此作为冷链中关键环节的冷库的高能耗问题也逐渐受到重视。利用太阳能驱动的氨水吸收式制冷系统与复叠制冷系统等传统方案虽然能有效降低冷库制冷功耗,但由于经济收益偏低而严重影响可行性。吸收-过冷压缩式复合制冷循环可利用低品位能驱动且性能系数较高,因此,本文提出将太阳能与机械功驱动的吸收-过冷压缩式复合制冷系统用于冷库供冷,建立系统热力、经济和环境