【摘 要】
:
信息化空袭与防空对抗具有多层次、多维度、多样化特征。为了克服传统的单防空平台防御系统作战能力不足的缺点,适应现代化战争的多平台协同防空作战模式应运而生,并已经发展
论文部分内容阅读
信息化空袭与防空对抗具有多层次、多维度、多样化特征。为了克服传统的单防空平台防御系统作战能力不足的缺点,适应现代化战争的多平台协同防空作战模式应运而生,并已经发展为主要的防空作战模式。多平台协同防空体系的核心内容是火力任务分配,它考虑各防空平台不同的作战能力,通过一定的最优分配原则调用各平台的作战资源进行协同防空,最大化拦截来袭目标,发挥系统整体效能。本文对多平台协同防空中的火力任务分配问题进行研究,旨在建立合理有效的协同防空作战模型,并给出满足指挥决策实时性要求的任务分配方法。本文主要工作如下:首先,建立多平台协同火力防空任务分配模型,设计防空想定场景与优化指标函数以及建立防空武器杀伤区与发射区模型。针对防空作战特点,充分考虑防空过程中的约束限制如时间窗口约束,协同制导约束,拦截可行性约束等,建立火力防空作战约束模型,保证解的合理性,并且与真实作战情景相符。其次,针对建立的数学模型,考虑模型中受不确定性影响的参数,分析不确定信息条件对这些参数造成的影响,并设计相应方法降低不确定性对决策的造成的干扰。对目标威胁度参数,使用逼近理想解的排序方法将不确定信息转化为确定信息;对于武器对目标的毁伤概率,建立武器与目标的不确定性模型,计算毁伤概率;对于其他难以定论的参数,使用基于集合的鲁棒优化方法,比较参数在劣势情况下的表现。最后,设计“有限集中-分布式自主协调”的决策控制结构,提出了多平台协同火力防空任务分配求解方法。在该结构下,防空平台内部采用构造性启发式算法快速得到分配结果,防空平台之间使用基于分配结果优劣性规则消解冲突,得到一致性分配结果。该决策控制结构可以有效减小单个平台信息处理量,避免单点故障。在分配过程中,采用滚动时域控制方法进行滚动优化,能及时处理分配过程中出现的动态事件,提高决策实时性。通过设计仿真实验,验证了本文建立的数学模型和使用的分配算法能提高多平台协同火力防空决策系统应对复杂多变战场环境的能力,具有实时性和有效性。
其他文献
环境污染与能源紧缺问题日益严峻,世界能源加快向多元化、清洁化、低碳化转型。近年来,光伏发电作为可再生清洁能源的代表走入人们的视野,并以明显优势逐渐接替传统能源成为时代的新宠。目前,我国电气化铁路发展迅速,推进“绿色交通”建设是新时代的发展方向,实现铁路低碳化运输的关键主要在于降低牵引供电系统传统用能。如果将光伏接入牵引供电系统,既可以优化牵引能耗结构、提升光伏消纳水平,又能够在一定程度上降低电气化
使用单相脉冲整流器的电力机车,在接入牵引网时,可能会发生网压网流低频振荡、谐波不稳定和谐波谐振的现象,造成牵引变流器封锁,危害铁路行车安全。通常采用阻抗模型对车网系统进行稳定性分析。但是,已有的CRH3型动车组建模采用状态空间平均建模法,无法找到稳定工作点;而且建模中忽略了电压外环控制和锁相环(Phase Locked Loop,PLL)的影响,这些会导致建模和稳定性分析不准确。本文以CRH3型动
超级电容作为辅助电源,以其功率密度高、耐低温性能优、快速充放电、环保等优点广泛应用于有轨电车中,为有轨电车动力输入提供便利的同时也带来了一些问题。在大幅度波动的工况或高温等极端环境下工作的超级电容会产生热效应,内部热量聚集造成温度在短时间内迅速升高,而超级电容正常工作的温度范围为233.15~343.15K,一旦温度超过这个范围,器件本身的电气性能和使用寿命将会严重受损,由此可见温度是影响超级电容
互联网和无线通信技术的快速发展使人们日益增长的对多媒体数据的需求得以满足。相对于普通的文本数据,音视频数据的传输更强调实时性。目前,智能手机间的音视频实时传输已有
钢轨打磨作为常用的钢轨养护措施,其打磨过程中砂轮和钢轨相互作用产生大量磨削热,不合理的打磨参数会使钢轨温升过高,导致钢轨烧伤和较大的残余应力,在后续服役过程中加剧钢轨疲劳损伤。因此研究打磨参数和打磨模式对钢轨温度场、钢轨热机耦合应力及残余应力的影响具有重要的理论意义和工程指导价值。论文基于虚拟砂轮模型,建立单个砂轮钢轨打磨三维模型,利用DEFORM有限元软件对钢轨打磨过程进行了模拟,仿真分析了不同
我国高速铁路的快速发展极大促进了国民经济的增长,高速铁路在人民生活中起到了举足轻重的作用。目前高速列车在运行过程中通过受电弓与接触网系统(以下简称弓网系统)为列车供电,一个稳定的弓网系统是其高速、安全、可靠运行的前提。近年来随着列车运行速度的提高,需要更大牵引功率的同时,也造成弓网离线率激增。弓网系统机械、电气、材料耦合性更加复杂,多因素的耦合机制以及这些因素共同作用下的损伤机理尚未明确,造成滑板
近年来,中国高速铁路发展迅速,年新增里程和客运量持续走高,现已稳居世界第一,为国民经济发展和日常便捷出行做出了重要贡献。其中,接触网作为高速铁路牵引供电系统的重要组成部分,是列车的动力来源,其良好的运行状态对保障高速铁路安全可靠运行具有重要作用。目前,随着接触网服役时间的增加和检测手段的完善,大量故障记录在运营和维护过程中被积累,这些数据能真实地反映接触网系统的特征,如何有效地进行挖掘成为目前亟待
随着HXD交直交型大功率机车和CRH(China Railway High-speed)型动车组的大规模投入运行,大量电力电子变换器设备接入到牵引供电系统中,引发了网压低频振荡等问题,造成了牵引闭锁,严重影响了电气化铁路安全有序的运行。针对牵引供电系统低频振荡问题,本文开展了基于有源电力滤波器的电气化铁路低频振荡抑制的研究。本文首先搭建了牵引供电系统车网耦合系统模型,以此作为低频振荡分析的基础。以
高速铁路列车的提速对高速列车的部件提出了更高的要求,变频牵引电机是高速列车的关键部件之一,聚酰亚胺薄膜作为一种优异的电介质材料,被应用于牵引电机的匝间绝缘中,在薄膜中掺杂纳米粒子可以改善薄膜的某些性能,例如介电常数和介电损耗、局部放电、击穿场强、电导率、空间电荷行为等介电性能,但是由于纳米粒子的团聚现象,会制约薄膜介电性能的进一步提升,等离子体改性作为一种材料表面改性的方法,目前鲜少有将其应用于聚