【摘 要】
:
过渡金属Mn2+离子具有核外3d5电子结构,是一种典型的发光离子,能在紫外光照射下发出强烈的绿光。而Mn4+具有核外3d3电子结构,能在紫外光照射下发出强烈的红光,与蓝光发射完全匹配,是一种理想的发射中心离子。在绿色平面显示、激光与照明等领域得到了较多的应用。探究新型的锰离子掺杂晶体材料一直是人们热切关注的研究方向。本文通过坩埚下降法合成Mn2+离子掺杂Na5Lu9F32单晶来制取高效稳定的新型光
论文部分内容阅读
过渡金属Mn2+离子具有核外3d5电子结构,是一种典型的发光离子,能在紫外光照射下发出强烈的绿光。而Mn4+具有核外3d3电子结构,能在紫外光照射下发出强烈的红光,与蓝光发射完全匹配,是一种理想的发射中心离子。在绿色平面显示、激光与照明等领域得到了较多的应用。探究新型的锰离子掺杂晶体材料一直是人们热切关注的研究方向。本文通过坩埚下降法合成Mn2+离子掺杂Na5Lu9F32单晶来制取高效稳定的新型光功能材料,另外通过提拉法生长了掺Mn4+红色发光Be Al2O4单晶。通过测试XRD衍射图谱确定其晶体结构,从吸收光谱、透过光谱、发射光谱、荧光衰减寿命以及泵浦功率等多方面验证其的光学特性、发光机理,并计算了不同晶体场下锰离子的晶格参数。本文绪论部分介绍了研究目的、过渡离子掺杂在激光晶体和LED领域的应用。介绍了Na5Lu9F32和Be Al2O4单晶的制备方法。第二章研究改进的Bridgman方法生长Mn2+单掺Na5Lu9F32单晶。通过XRD衍射图谱、吸收光谱和发射光谱分析了Mn2+单掺的Na5Lu9F32单晶的晶体结构以及发光机理。计算了Mn2+单掺的Na5Lu9F32单晶的晶格参数。晶体场的Dq和Racah参数的计算值表明,通过将Mn2+离子引入Na5Lu9F32单晶可以形成被八个F-配体包围的Mn2+离子的稳定立方晶体结构。第三章主要介绍了提拉法合成一种新的掺Mn4+红色发光Be Al2O4单晶。在畸变的八面体中,占据Al3+位的Mn4+离子发出窄的红光。通过XRD衍射图谱、激发和发射光谱,热猝灭、变温光谱以及寿命衰减曲线分析了其发光机理。随着温度从298 K升高到503 K,发光强度和寿命都降低。Mn4+发射的热猝灭行为归因于4T2态的交叉。结果表明,Be Al2O4:Mn4+晶体是改善WLEDs性能的合适材料。第四章主要介绍改进的Bridgman法生长了具有优异光学性质的Ce3+/Yb3+/Ho3+三掺Na5Lu9F32单晶,并通过XRD衍射图谱、吸收、发射光谱以及对荧光寿命曲线对其上转换发光性能进行研究。Na5Lu9F32晶体是研究Ce3+/Yb3+/Ho3+三掺杂体系UC发光及其它光学性质的理想候选主材料。随着晶体中Ce3+离子浓度的递增,红绿光强度比(R/G)由0.05增加到55.9。结果表明,引入Ce3+离子是提高Na5Lu9F32单晶中Ho3+离子纯度的有效途径。论文第五章为总结与展望,概括了全文的主要科研内容,并对未来作一步研究做出展望和期待。
其他文献
硫系材料具有独特优良的光学特性,包括:较大的线性和非线性折射率、较宽的透过范围和较低的声子能量。特别是较大的非线性折射率特性,使它们在全光开关、波长转换、超连续光谱和光放大等光学应用中发挥着重要作用。然而,硫系玻璃的柔性结构易受温度和光强的影响产生弛豫,这会影响光器件工作的稳定性,对硫系光器件的应用产生很大的局限性。本文利用磁控溅射法制备了系列平均配位数(MCN)为2.27~2.66的Ge-Sb-
党的十九大提出乡村振兴战略,体现了党对农村、农业、农民问题一如既往的重视,并且在新时代更有所创新发展。2017年12月28日召开的中央农村工作会议指出,办好农村的事情,实现乡村振兴,关键在党,必须加强和改善党对“三农”工作的领导。党在国家的一切社会经济发展中都起到了重要的作用,包括发展方向的把控,宏观大局的谋划,政策法规的制定,以及促进全面深化改革等。在这一过程中,党始终扮演着总揽全局、全面协调的
超新星是一种极为重要的天文现象,超新星在星际介质和岩石行星的形成等方面有重要研究意义。大质量恒星死亡时会产生核心坍缩型超新星,由于恒星存在外包层,因此对于核心坍缩型超新星来说,我们应该可以观测到其爆炸抛射出的外包层。但是观测上发现,有很大一部分核心坍缩型超新星爆发时并没有显示出其有外包层物质抛射,这意味着这些超新星的前身星在爆发前就已经损失掉了其外包层,这些超新星被称包层剥离超新星。包层剥离超新星
随着科学技术的发展,发光材料由于在国防军事应用、白光LED、光存储以及光通信等方面存在着广泛的应用,寻找高效而且性能稳定的发光材料已成为研究的热点。发光材料的发光激活中心主要为稀土离子和过渡金属离子。稀土离子因其独特的电子层结构和众多的能级数,因而成为理想的发光材料成分之一。这类发光材料的光学性能优异,有着极佳的实际应用的潜力。与稀土离子不同,过渡金属离子的d层电子暴露在外,不像稀土离子4f层电子
油茶是我国最古老的木本油料植物之一,目前广泛分布在我国南方的亚热带的地区。进入21世纪以来,伴随着人们对油茶认识的提高,其发展的比较优势逐步凸显,油茶本身的价值不断被发掘,不仅有食用价值,还可以加工成为化妆品、医疗保健品、化工品、优质化肥等高附加值产品。中央和地方政府也对油茶产业发展给予充分重视,陆续出台了许多产业扶植政策,极大地推动了我国各地油茶生产的积极性,社会资本不断涌入,油茶产业逐步进入发
近年来,随着社会不断发展进步,人们工作压力与日俱增,社会中亚健康问题逐渐凸显。当代人更加注重身心的修养,日益关注旅游活动的同时,越来越重视解决追求工作效率与健康养身休闲和谐发展。目前,康养旅游发展趋势逐渐强势,攀枝花市的政策对发展康养旅游极为有利。本文应用规范研究和类比分析的方法,通过对攀枝花气候和地理区位、康养与生态旅游的关系,攀枝花市发展康养旅游的理论优势、可能面临的问题以及未来发展方向进行深
作为新型的红外传输材料,硫系玻璃具有超宽的红外透过区域、较低的声子能量、较高的线性和非线性折射率、优良的热稳定性能、可调的组成等特性,在红外光学、非线性光学器件以及光电子等领域应用广泛。在众多的硫系玻璃中,Te-As-Se(TAS)硫系玻璃具有优异的红外光学和非线性光学性能而备受关注,特别是在2-18μm超宽透过光谱,覆盖了绝大多数分子的“指纹”区域。虽然TAS玻璃研究较早,但各种性能参数比较匮乏
随着经济的发展,人们可支配收入的不断提高以及人类生活环境质量的恶化,人类“回归自然”心态的激活,乡村旅游作为一种以农村为阵地,以农业为依托,通过开发田园风光、利用本土资源打造特色旅游产品、增强乡村生活体验等方式吸引城市居民前来休闲旅游的一种活动正被越来越多的人接受和喜爱。近年来,中央到地方也不断出台政策促进“三农”发展,党的十八大以来,提出的五大发展新理念,促进新型城镇化对广大乡村产生了“宜居、宜
当前社会的能源基础设施严重依赖化石燃料,但相关的环境污染、能源危机和气候政策可能正在逐渐改变这一状况,并推动全球对环境友好和持续能源生产的需求。高效半导体催化剂的开发模仿了自然光合作用的催化功能,从水和阳光中产生化学燃料,提出了一种有前途的可再生资源绿色生产模式。随着现代材料表征技术和电子结构计算的发展,催化剂表面性质被逐渐确认为纳米催化材料的重要组成部分之一,与其光化学反应中的动力学、热力学和反
吲哚啉骨架广泛存在于天然产物中,具有高生理活性的特点,因此药物化学家对其进行结构改造或修饰来制备药物分子。而过渡金属催化C—H键活化则通过简单切断分子中的C—H键并引入新的官能团,对化合物进行结构改造和修饰,从而为实现分子多样化提供了强有力的工具。因此研究吲哚啉衍生物的选择性C—H键活化具有重要的意义。在此,先回顾了吲哚啉C—H键活化反应的相关工作,然后开发了新的绿色反应体系以弥补先前工作的不足;