【摘 要】
:
对卷积神经网络容错性的研究,是为了构建新型的更高可靠网络模型。真正的容错性,是指在系统架构层发生异常时,神经网络仍然能保持正常应用功能的能力。在航天领域,空间辐射环境引发的软错误,会给系统的稳定运行和卷积神经网络应用带来隐患。因此,基于软错误的卷积神经网络容错性研究尤为重要。本文将围绕这方面的内容,设计适用于视觉卷积神经网络容错性研究的软错误激发系统。利用系统级仿真平台,本文对系统架构层的关键硬件
论文部分内容阅读
对卷积神经网络容错性的研究,是为了构建新型的更高可靠网络模型。真正的容错性,是指在系统架构层发生异常时,神经网络仍然能保持正常应用功能的能力。在航天领域,空间辐射环境引发的软错误,会给系统的稳定运行和卷积神经网络应用带来隐患。因此,基于软错误的卷积神经网络容错性研究尤为重要。本文将围绕这方面的内容,设计适用于视觉卷积神经网络容错性研究的软错误激发系统。利用系统级仿真平台,本文对系统架构层的关键硬件组件和上层卷积神经网络应用程序进行建模,并通过故障注入的方式,模拟了软错误的产生,构造了基于故障注入的软错误发生系统。与此同时,本文设计了系统架构层和应用程序层的数据收集方案,形成自动化的软错误发生与数据样本收集架构。为了对软错误进行激发,需得到故障从架构层向程序层传播的路径,本文通过二态贝叶斯离散网络,将系统架构层和应用程序层的观测节点进行分层级联分析,通过不同层次化的结构与参数学习,得到了贝叶斯网络拓扑结构和贝叶斯条件概率表。对拓扑图的正向推理可检测贝叶斯网络的准确性,对其逆向推理可定位在数据损坏(SDC)故障发生的情况下,最有可能出现异常的关键寄存器。为了使卷积神经网络的故障表现集更加完善,本文通过贝叶斯分权故障注入的方式,设计了软错误故障激发方案以获取更多的故障样本,依据贝叶斯权重,调整各寄存器所占的注入次数比,使得在故障实验次数不变、时间开销一致的情况下,将原先平铺注入时3.33%的SDC故障发生率提升到6.11%。
其他文献
随着互联网的高速发展,各种信息资源呈现井喷趋势,仅仅依靠搜索引擎已经难以为用户提供优质的信息服务。为了缓解信息过载问题,各大公司纷纷构建推荐系统,为用户提供精准的个性化推荐服务。在一些网站上,用户可以随意为喜欢的物品打上社会化标签,这些标签不仅可以反映用户的偏好和态度,也折射出物品的内在属性。因此,标签感知推荐系统将这些协同行为产生的社会化标签作为一种内容信息,为用户提供个性化的物品推荐。为了解决
跨年龄人脸识别作为通用人脸识别研究的细分方向之一,在金融、安防监控、智能手机应用等诸多领域都具有重要的应用价值。跨年龄人脸识别由于受到人脸皱纹随着时间变化而加深、颅骨形状改变等因素影响,比通用人脸识别任务难度更大,识别准确率也相对更低,并且由于跨年龄人脸识别研究较通用人脸识别而言起步晚,现有的方法也相对较少。鉴于此,本文针对跨年龄人脸识别问题展开更进一步的研究。首先,鉴于ResNet50网络模型在
随着信息技术的不断发展,人们对信息的安全性越来越重视,出现了软件和硬件两种主流的加密方式。软件加密由于其加密方式简单,并且不会破坏传输信号的性能,一直被广泛应用。但由于量子计算机的出现,计算机性能的不断提升,软件加密算法逐渐会在短时间内被暴力求解的方法破解。所以现在人们越来越关注硬件层面加密,混沌加密作为一种物理层加密方式,可以实现信号的高速长距离安全传输,和现有光通信系统兼容,获得了国内外持久的
随着移动互联网的高速发展,各种Android应用为手机上网带来了巨大便利。但是,由于Android系统的开源性也产生了许多恶意应用程序,对网络安全造成了严重威胁。此前,研究人员主要基于静态代码和动态行为对Android恶意应用进行识别与分类,这两种方法计算复杂度太高,没有得到良好的普及。由于恶意应用通过诸如僵尸网络等渠道执行恶意行为,因此可以通过分析恶意应用产生的网络流量对恶意应用进行分析检测。基
据IDC数据显示,2019年前两个季度全球智能手机累计出货量约6.4亿台。在如此庞大的出货量上,不允许在研发阶段漏掉任何一个应用崩溃、系统死机或重启等稳定性问题。稳定性是保障用户长时间流畅使用设备的核心需求。随着安卓系统更新频率逐步加快,手机制造商为了抢占市场不得不缩短研发周期。因此,如何在短暂研发周期内快速发现并解决稳定性问题,为用户提供更高品质的手机,成为各大厂商研究的重要课题。本文基于安卓系
卷积神经网络逐步成为人工智能应用的基础,然而网络参数量的增加,加大了其部署难度,限制了其应用范围。如何设计轻量化算法和快速低能耗硬件加速器成为研究热点。本文基于权重压缩算法,探究网络稀疏化和低位宽推断技术,提出一种使权重稀疏化且量化为幂次的轻量化算法,并采用Image Net数据集完成算法的验证。面向该算法,本文设计了一款基于移位的稀疏卷积神经网络加速器。针对稀疏网络权重少但运算不均衡的特性,对稀
推荐系统通过推荐算法以个性化的方式向用户提供其可能感兴趣的内容。推荐算法有基于内容的推荐和基于用户行为的推荐两种。基于内容的推荐算法需要使用用户及物品的特征,对于不同的场景这些特征都会有很大差异,针对各种场景分别构建特征与模型会增加研发和运维成本。基于用户行为的推荐算法虽然可以复用到不同场景,但只考虑了用户和物品的交互,没有考虑用户行为的时序性。如何利用用户行为的时序性改进基于用户行为的推荐算法是
多智能体系统将会是未来最重要的智能体系统之一。诸如无人驾驶、机器人集群、以及竞技类运动的训练系统都是多智能体系统的应用。在多智能体系统中,协作是一种非常重要的智能体之间交互的方式。在现有的方法中,基于通信的多智能体协作是计算量最低、最有效的方式。然而,现有的方法存在通信量过大、不够稳定等问题。为了减少智能体通信量、提高系统整体稳定性,进而提升多智能体协作系统整体成功率,本文提出了一套基于特征化信息
基于卷积神经网络(Convolutional Neural Network,CNN)的目标检测算法以其优异的物体识别和目标定位性能,被广泛应用于各个领域。然而,随着应用场景的复杂化,CNN的网络层数和计算复杂度逐渐增大,传统的中央处理器(Central Processing Unit,CPU)难以实现实时处理。此时,现场可编程门阵列(Field Programmable Gate Array,FP
无线传感网络至今已应用于很多领域,其安全性也越来越重要,保证网络数据安全传输、网络中设备安全可靠一直是一个研究热点。然而受网络传感节点能量、计算和存储资源限制,给传统的密钥管理及身份认证技术带来了巨大的挑战。论文在雾计算标准框架的基础上,设计了基于对称多项式的密钥管理和身份认证方案,充分利用网络中节点的计算和存储能力,在占用较少节点资源的同时,有效地保证了传感网络的安全。论文主要工作及取得成果如下