【摘 要】
:
高熵合金作为新世纪最具潜力的合金材料,引起了世界各国研究人员的兴趣,目前高熵合金的研究发展极为迅速,研究成果相继涌现,已经开发出许多具有特殊性能的高熵合金。然而在这些高性能高熵合金中大部分都含有昂贵的合金元素Co、V等,极大限制了工业生产大规模使用,因此本研究立足于开发低成本、高性能的铁基高熵合金,以满足对实际应用的需求。本文通过相图模拟、热力学参数及层错能计算开发出一种不含Co的亚稳型铁基高熵合
【基金项目】
:
山西省自然科学基金(No.201901D111105和201901D111114); 山西省高等学校科技成果转化计划(2019); 先进金属材料国家重点实验室(批准号2020-Z09); 爆炸科学与技术国家重点实验室(北京理工大学)开放项目(编号为KFJJ20-13M);
论文部分内容阅读
高熵合金作为新世纪最具潜力的合金材料,引起了世界各国研究人员的兴趣,目前高熵合金的研究发展极为迅速,研究成果相继涌现,已经开发出许多具有特殊性能的高熵合金。然而在这些高性能高熵合金中大部分都含有昂贵的合金元素Co、V等,极大限制了工业生产大规模使用,因此本研究立足于开发低成本、高性能的铁基高熵合金,以满足对实际应用的需求。本文通过相图模拟、热力学参数及层错能计算开发出一种不含Co的亚稳型铁基高熵合金Fe50Mn20Cr20Ni10,并且研究了其微观组织、力学性能及变形机制之间的关联。研究结果表明真空感应熔炼得到的铸锭经过1200℃均匀化处理6 h后为单相面心立方结构(FCC),合金组织为等轴晶,晶粒尺寸约为100μm。然后在室温298 K下,合金展现出优异的力学性能,屈服强度为300 MPa,抗拉强度为550 MPa,延伸率为60%,加工硬化指数为0.41。通过高分辨透射电子显微镜(TEM)分析合金的变形机制为高密度位错和变形孪晶的交互作用,并利用Labusch模型准确预测了合金的屈服强度值。在低温77 K下,合金同样展现出优异的力学性能。由于低温下合金的层错能降低,更容易达到马氏体相变的临界应力值,因此,合金展现出优异的加工硬化行为。通过TEM表征到位错-位错、位错-变形孪晶、位错-马氏体之间的交互作用,进一步肯定了马氏体相变对合金力学性能的重要作用。随后对单相面心立方(FCC)结构的Fe50Mn20Cr20Ni10高熵合金进行冷轧退火处理,即冷轧70%之后分别在1073 K、1173 K、1273 K温度下退火1 h。然后使用TEM和扫描能谱(SEM-EDS)详细研究了合金微观组织结构的演变、力学性能的变化及其变形机制。研究结果表明经过冷轧退火处理之后的1073 K、1173 K、1273 K试样,在FCC结构的γ基体上析出了富Cr的金属间化合物σ相,呈现(FCC+σ)双相结构。在室温298K和低温77 K下拉伸变形之后的TEM分析表明在室温下金属间化合物σ相几乎不发生塑性变形,只承担极其微小的一部分应变,仅在相界面处堆积了部分位错。然而在低温77 K拉伸过程中σ相却会发生明显的剪切变形,而且在其内部塞积了浓密的位错团。因此,基于硬质第二相(σ相)的存在所引起的析出强化和背应力硬化能够使合金拥有非常优异的力学性能。
其他文献
生活中,幼儿往往在"涂涂画画"中说"我写好了",随意的涂鸦、不知所以的符号、画出来的文字,却是幼儿在未接受正式书写教育前的书写行为。大班幼儿,随着经验的丰富,前书写行为越加频繁地渗透在日常活动及游戏中,但书写经验难以提升。《指南》建议"在绘画和游戏中做必要的书写准备",本文通过开展自主性游戏,以挖掘有价值的游戏故事,将前书写行为从个体扩展至群体,从游戏中的说、游戏后的画与写等多个途径将前书写巧妙地
本文保持Ca、Al总质量分数4.8 wt.%,制备了Mg-x Al-(4.8-x)Ca-0.6Mn(x=4,3,2.4,2.0 wt.%)合金。基于此,通过添加TiCp(0.5 wt.%),制备了纳米TiCp/Mg-Al-Ca-Mn复合材料,并对铸态合金和复合材料进行热挤压变形。系统地研究了Ca/Al比及纳米TiCp对铸态和挤压态Mg-Al-Ca-Mn合金及TiCp/Mg-Al-Ca-Mn复合材料
钢铁工业是自动化程度较高的流程工业之一,工业机器人已成为欧美国家钢铁生产线的主流配置。近年我国部分钢铁企业也在炼钢、轧制等关键工序开始应用工业机器人。特钢棒材精整作业包含拆捆、打捆、修磨、贴标、称重等作业工序,具有转运频繁、环境恶劣、劳动繁重、安全风险高等特点,迫切需要推动作业岗位机器人化及无人化,以满足特钢企业安全、高质、高效的生产需求。修磨作为特钢精整现场的关键工序,可消除产品缺陷,提升产品附
从国家目前的发展趋势来看,到本世纪中叶,煤炭的需求量还占中国能源需求总量的50%以上,随着煤矿往绿色环保化、智能化、机械化、大型化和集约化发展,对煤尘的防治有了更高的要求。迄今为止,世界各国已经构建了140多种煤的分子结构,而关于无烟煤的分子结构模型仅有10多种,且我国南部地区的无烟煤煤尘分子结构模型还没进行构建。贵州毕节和福建龙岩地区是我国南方最主要的无烟煤生产基地,该地区无烟煤质地较硬,产生的
高熵合金由于成分和组织的多样性使其具有许多优异的性能,如高强度、高硬度、良好的低温性能、良好的热稳定性、良好的耐腐蚀性等。对于单相面心立方结构的高熵合金,虽然可以表现出优异的塑性变形能力,但强度较低。目前所研究的面心立方(FCC)结构的高熵合金中通常含有价格昂贵的过渡族金属元素,这也限制了高熵合金在工程领域的应用。为了降低面心立方结构高熵合金的生产成本,需要合理地设计合金的成分。为了提高熵合金的力
超级奥氏体不锈钢具有优越的耐腐蚀性能,被广泛应用于烟气脱硫、垃圾焚烧、海水淡化以及石油化工等领域。对于Mo含量达6~7%的高钼超级奥氏体不锈钢,在某些情况下可与具有极佳耐蚀性的C276等铁镍基合金以及钛合金相媲美。在此基础上,为了使奥氏体不锈钢具有更加优异的力学性能,析出强化是最有效的一种强化方式,通过弥散分布的析出相可显著提高材料的屈服强度与抗拉强度。目前,围绕合金元素尤其Mo在Nb C/fcc
太阳能选择性吸收涂层可以提高材料的太阳能选择吸收性能,实现对太阳能的高效利用。为同时提高太阳能选择性吸收涂层的选择吸收性能和耐高温性能,推广太阳能选择性吸收涂层的应用,本课题从结构设计入手,通过制备红外反射层和隔离层(Barrier Layer,BL),得到性能良好的太阳能选择性吸收涂层。通过对涂层选择吸收机理研究,得到一般规律,为太阳能选择性吸收涂层的优化设计提供借鉴。本课题根据实验室前期研究的
由于传统化石能源不可再生而终将枯竭,以及大量燃烧化石能源带来诸多的环境问题,作为替代,氢是一种备受期待的新能源。研究具有优秀的储氢性能的储氢合金具有重要意义。高熵合金理论分析上是非常适合储氢的材料,具有使结构简化、有高熵效应等独特的特点。而镁又是一种廉价而又丰富的元素,具有很高的理论储氢量。本文通过高能球磨制备高熵合金,并利用X射线衍射(XRD)测试来确定球磨后样品的晶体结构和晶粒尺寸等。微观颗粒
煤层回采过程中产生的采动卸压瓦斯涌向工作面,严重影响煤矿井下的安全生产,瓦斯抽采不仅能有效防止煤矿井下瓦斯灾害的发生,还能变废为宝,缓解因瓦斯排空造成的温室效应并增加煤层气清洁能源的应用。本论文采用理论分析、物理试验和现场实测相结合的方法研究了采动区卸压瓦斯覆岩裂隙优势通道演化规律,并基于上述研究结果提出了采动井井位层位的最佳布置方式。主要研究成果如下:通过理论分析、相似模拟试验研究采动过程中覆岩
Mg-Gd-Nd系合金具有良好的固溶强化效果,同时具有很好的时效硬化响应,而在RE元素中加入定量的Zn元素(RE/Zn>1(at))可以形成具有强韧性的(Long period stacking order structure)LPSO结构相,这是提高合金强韧性的有效方法之一。但是LPSO相的形成会消耗RE元素,过量的LPSO相反而会致使合金力学性能下降,同时Zn元素加入会降低RE元素在Mg中的溶