论文部分内容阅读
波分复用无源光网络(WDM-PON)系统以其高容量、大带宽等特点使其成为下一代光接入网中最具前景的方案之一。而低成本、高性能的光电子器件则是WDM-PON系统在未来能否取得成功的关键。单片集成光源器件相比传统的分立器件封装成本低、器件性能强,因此是未来WDM-PON系统用光电子器件发展的必然方向。本文从光电子器件理论建模出发结合器件制作工艺,针对WDM-PON中的低成本光源器件进行了深入的理论与实验研究,开展了以下几个方面的研究工作:运用k·p理论模型,对半导体量子阱材料增益谱进行了理论计算,分析了量子阱应变量及阱宽等参量对半导体材料能带结构及增益谱的影响。讨论了不同应用下,量子阱结构设计的原则与要求。基于时域传输矩阵模型及材料增益计算模型,开发了半导体激光器器件模拟平台。基于本平台,对分布布拉格反馈(DFB)半导体激光器的空间烧孔效应进行了模拟仿真。详细讨论了在光栅结构设计中集中相移、分布相移、多相移、分布反馈系数等参量对DFB半导体激光器空间烧孔效应的影响。分析讨论了光栅归一化耦合系数对DFB激光器调制特性的影响。使用新型动态模型分析半导体激光器,根据器件中有源区波导与无源区波导的不同特点分别采用时域模型及频域模型,而后通过数字滤波器的方法将两者有机地联系起来。并通过数字滤波器法考虑了器件增益谱的非平坦效应。利用该新型动态分析模型,对双微环耦合半导体激光器这一新型低成本、高性能的可调谐激光类型进行了时域静态及动态分析。主要分析讨论了微环耦合系数及损耗对器件P-I特性、小信号调制特性、大信号调制特性以及波长切换特性的影响。使用波束传输(BPM)算法设计并优化了InP基四通道、八通道多模干涉(MMI)器件以及16通道阵列波导光栅(AWG)器件。系统地讨论了MMI器件中,制作工艺误差对器件损耗以及带宽的影响。详细讨论了AWG的性能估算的解析方法,利用该方法研究了AWG器件中阵列波导间距及阵列波导喇叭口(Taper)宽度对器件插损均匀性及中心通道插损的影响。基于研究结论,设计了InP基AWG器件,并利用BPM算法对AWG器件进行了性能模拟,设计指标符合预期。使用纳米压印技术制作DFB激光器掩埋光栅,针对直接使用纳米压印胶后,掩埋生长质量不佳,出现大量位错的问题,提出了多层掩膜去除纳米压印胶残胶的方法。该方法大大提高了光栅掩埋质量,极大地降低了最终器件的阈值,达到商用标准。对金属有机物气相沉淀(MOCVD)对接生长工艺进行了系统地研究。讨论了介质膜刻蚀以及InP刻蚀方法对最终对接生长质量的影响。改进了湿法腐蚀策略,并调整干法刻蚀参数,最终完成了高质量的对接材料生长。结合前述纳米压印工艺,提出了前置光栅制作而后对接生长的新工艺顺序,解决了对接生长工艺后,有源区表面相对无源区表面凹陷,纳米压印工艺难以实施在有源区的问题。采用新工艺,完成了高质量内藏光栅单片集成外延材料的制备。系统地研究了等离子诱导量子阱混杂单片集成工艺,提出了基于灰度掩膜的等离子诱导量子阱混杂方法,实现了同一外延片上多个带隙及连续带隙的横向集成。详细研究讨论了掩膜版占空比及条纹宽度对等离子诱导量子阱混杂程度的影响。研究了单片集成器件中多种波导结构横向单片集成问题。提出了新型自对准光刻工艺。利用光刻胶上生长二氧化硅,并进一步使用lift-off工艺剥离二氧化硅的方式,实现了多种去除方式的多掩膜自对准套刻,完成了多种波导结构横向单片集成的高质量制作。在前述理论设计及相关配套工艺研究的支持下,实际制作了用于集成的各种分立器件包括16通道1550nm波段密集波分复用(DWDM)阵列激光器、4通道1310nm波段粗波分复用(CWDM)阵列激光器、4通道InP基MMI耦合器、16通道InP基AWG器件。对阵列器件热调谐串扰进行了测试与分析。利用X射线衍射(XRD)、光荧光(PL)系统地分析了纳米压印光栅制作工艺对量子阱外延片的影响,研究了纳米压印光栅工艺对DFB半导体激光器寿命的影响。在前述理论设计,相关配套工艺研究及分立器件制作的基础上,完成了4通道DFB阵列激光器单片集成MMI耦合器的单片集成光源器件制作。器件平均阈值小于10mA,边摸抑制比大于50dB。完成了16通道DFB阵列激光器单片集成AWG合并器的单片集成光源制作,器件光谱边摸抑制比大于40dB,通道间隔1.6nnm,均方根误差小于0.1nnm。