论文部分内容阅读
我国每年交通事故带来的损失巨大,其中由驾驶员失误引发的交通事故占90%以上。面对日益严峻的交通安全形势,传统的针对碰撞发生后的被动保护技术和措施已经不能满足现代交通的要求,发展以预防为核心的现代汽车主动安全技术成为现代交通的迫切需求。特别是安全辅助驾驶技术的开发具有重要的现实意义。相比国外的研发工作,我国在行驶辅助系统方面的研究起步较晚,技术成果不够成熟,不能覆盖和解决车辆行驶中遇到的所有实际问题。研究主要局限于平稳路面上两车同向行驶时超车或防追尾的层面,忽略了行驶实际路况的复杂性。一旦单车高速行驶在弯路或下坡路段情况下,现存的行驶辅助系统就失去了作用。因此,研究弯路和下坡路段的辅助行驶有利于填补目前汽车行驶智能化中关于道路影响的空白,是十分必要的。本文首先通过总结国内外行驶辅助系统的研究现状,从汽车制动安全方面考虑,提出了一种新的行驶辅助系统设计方案——汽车主动速度控制系统。并针对该系统的安全速度控制方面,以道路和车辆为主要考虑因素,对汽车在弯路和下坡两种道路条件下可能发生的危险工况如侧滑、侧翻、制动距离过长等进行了深入分析,选取了影响车辆安全行驶的主要参数:纵向速度、侧向偏移量和前后车轮垂直反力,建立了两种路况下安全速度的数学模型。同时将理论分析与仿真试验相结合,以多体动力学仿真软件ADAMS为平台,建立了车辆模型、道路模型、车—路耦合模型和仿真试验模型,通过仿真方案、驾驶员控制策略的设计选择,实现了车——路联合仿真。最后借助成渝高速公路的实际道路模型,分别对选取的弯路段和下坡路段进行了不同速度的仿真,通过对仿真结果的分析确定了相应路段行驶控制的安全速度值。为保证汽车制动安全,论文从动力学角度对汽车在弯路和下坡路段的行驶稳定性进行了详细的研究,分别建立了速度与弯道半径和坡度的数学模型。并将车辆在弯道和下坡路段仿真得出的安全速度值与通过数学模型计算得到的安全速度值进行了比较。经过误差分析验证了提出的数学模型的准确性达到了95%以上。说明该模型可以作为汽车主动速度控制系统限速的依据和辅助行驶时相应路段的安全速度的判别标准。论文的研究成果为汽车主动速度控制系统的研发奠定了理论基础,具有重要的指导价值,对提高汽车的制动安全具有一定的可行性。。