论文部分内容阅读
随着能源枯竭、环境污染等问题日趋严峻,太阳能、风能等清洁能源应运而生并得到广泛应用。而可再生能源发电量的日渐增加,对并网逆变器的容量提出了新的需求,这大大增加了单台逆变器的设计难度。输入串联输出串联(Input Series Output Series,ISOS)逆变器系统适用于输入电压输出电压均较高的场合,用该系统代替单个逆变器用于并网场合,可以减小系统中每个逆变器模块的电压应力,便于设计,降低成本,同时可以提高并网系统的可靠性。此外针对数字控制并网逆变器,在实际应用中由于输电线路存在较大变化范围的阻抗,因此对并网逆变器要求进一步提高,保证系统对电网阻抗的鲁棒性问题不容忽视。针对ISOS逆变器系统,首先需要保证输入均压输出均压即模块间的功率均衡;将该拓扑运用到并网系统中,故需满足并网电流的高功率因数;同时采用LCL滤波器,需要对其固有的谐振尖峰进行抑制,因此对于ISOS并网逆变器系统首先需要满足上述三重控制目标。基于此选择电容电流和并网电流为控制变量,提出复合式控制策略,其主要包含输入均压环,输出电流环以及电容电流内环三个控制环路。输出电流环保证并网电流跟踪电网电压实现高功率因数并网,而采用电容电流内环可以在有效抑制LCL谐振尖峰的同时保证输出电压同相位,结合输入均压即可实现模块间的功率均衡。在上述方案的基础上,为进一步提高系统的可靠性,需实现系统的第四重控制目标,即分布式控制和系统的冗余容错运行,以切实提高系统的可靠性。这里将各控制环路分散到各模块中去并引入母线实现模块间相互通信,从而实现系统的分布式控制;进而在输入输出端加入旁路开关,与信号开关之间协同工作,采用合理的控制时序,完成故障模块的退出和备用模块的投入,最终实现系统的冗余容错运行。为提高数字控制ISOS并网逆变器系统对电网阻抗变化的鲁棒性,实现系统的第五重控制目标,将相位超前环节引入到系统的控制策略中,对ISOS并网逆变器系统进行模型等效,依据基于阻抗分析的稳定性分析方法,对系统加入相位超前补偿器前后的鲁棒性进行分析,并通过仿真说明加入相位超前补偿器可以有效提高ISOS并网逆变器系统的鲁棒性。最后论文给出了ISOS并网逆变器系统的参数设计及功率器件的选取过程,并在实验室搭建了三模块ISOS并网逆变器系统原理样机,实验结果验证了本文所提目标多重化控制策略的有效性。