【摘 要】
:
具有积分边值的非线性微分方程具有广泛的应用性,例如热传导,等离子物理等许多实际问题都可以归结为带有积分边值条件的问题.因此,积分边值问题是国内外的研究热点.本文的主要工作是:利用拓扑度理论,同伦连续法等非线性分析理论和方法,研究高阶非线性微分方程的周期积分边值问题解的存在性和唯一性.第一部分我们主要研究高阶微分方程的周期积分边值问题.在推广的Laz-er型限制条件下得到偶数阶微分方程周期积分边值问
论文部分内容阅读
具有积分边值的非线性微分方程具有广泛的应用性,例如热传导,等离子物理等许多实际问题都可以归结为带有积分边值条件的问题.因此,积分边值问题是国内外的研究热点.本文的主要工作是:利用拓扑度理论,同伦连续法等非线性分析理论和方法,研究高阶非线性微分方程的周期积分边值问题解的存在性和唯一性.第一部分我们主要研究高阶微分方程的周期积分边值问题.在推广的Laz-er型限制条件下得到偶数阶微分方程周期积分边值问题解存在性的充分条件.并将结论推广到x∈Rn的情形.这部分首先考虑下面的2n阶微分方程周期积分边值问题其中t∈[0,2π],x∈R,ki,(i=0,1,…,n-1)是一些常数,f:[0,2π]×R→R.主要结果为下面定理:定理2.1.1假设函数f(t,x)是连续可微的,并且存在常数k,M1,M2,使得其中是Z+上的单调增函数,则周期积分边值问题(0.0.1)有唯一解.其次,我们进一步考虑n维向量方程的周期积分边值问题其中,f∈[0,2π],x(t)=(x1(t),x2(f),…,xn(t)),αj,(j=0,1,…,k-1),是一些常数.在下面的假设条件下进行讨论:(H1).f∈C1([0,2π]×Rn),并且f关于x的Jacobi矩阵fx为n×n实对称矩阵.(H2)存在n×n实对称矩阵A和B以及正整数Ni,(i=1,2,…,n)满足其中λ1≤λ2≤,…,λ。和μ1≤μ2≤,…,μn分别是矩阵A和B的特征值,定理2.4.1在满足假设(H1)和(H2)条件下,边值问题(0.0.2)有唯一解.第二部分我们进一步讨论较为一般的二阶非线性微分方程的周期积分边值问题.通过引进变换得到方程(0.0.3)的周期积分边值问题的研究等价于研究问题假设如下:(A1)存在常数M1>0和M2>0,函数p(t)满足M1≤p(t)≤M2;(A2)存在常数a和b,使得对于所有的(t,x)∈[0,T]×R满足(A3)存在N∈Z+,使得定理3.3.1在满足假设(A1),(A2)和(A3)的条件下,周期积分边值问题(0.0.4)有唯一解.第三部分我们考虑线性增长条件的另外一个情况,即函数比值的情况,获得了前面所讨论方程的周期积分边值问题解的存在性.具体地,考虑下面周期积分边值问题其中t∈[0,2π],x∈R,f:[0,2π]×R→R.假设(A1)函数f连续,即f∈C([0,2π]×R,R);(A2)存在m,N和ε,使得对于所有的(t,x)∈[0,2π]×((-∞,-m]∪[m,∞)),都有其中,m>0,N是非负整数,ε是一个小正数.主要结果为以下定理:定理4.2.7在满足假设(A1)和(A2)的条件下,周期积分边值问题(0.0.5)至少有一解.
其他文献
hMOF(human MOF),又叫MYST1,是组蛋白乙酰基转移酶MYST家族的成员之一。在哺乳动物细胞中hMOF作为催化亚基至少参与形成两种不同的多蛋白复合物—MSL和NSL复合物。MSL(Male Specific Lethal)复合物最初发现在雄性果蝇X染色体的剂量补偿过程中发挥重要的作用,并在细胞中主要乙酰化组蛋白H4赖氨酸第16位点(H4K16)。由9种亚基组成的NSL(Non Spe
在原子光谱数据中,原子和离子的辐射跃迁参数(能级的自然辐射寿命、分支比、跃迁几率和振子强度等)对原子物理、等离子体物理和天体物理等领域的发展而言是一类极其重要的光谱学数据。由于稀土元素在许多领域有广泛而重要的应用,人们一直非常重视对稀土元素原子、离子辐射跃迁参数的研究。随着激光器的发明,激光光谱技术得到迅猛发展,这为原子离子辐射特性参数的研究提供了强有力的工具。本论文运用时间分辨激光光谱技术以及激
Schrodinger方程是量子力学中的基本方程,用来描述量子系统中关于原子,分子,亚原子等粒子的自由态,束缚态,局部化的变化情况.本论文主要讨论不同边界条件下双线性Schrodinger方程的控制问题,给出了一维Schrodinger方程的能控性及其稳定化结果.本论文共分为四章.第一章主要介绍了双线性偏微分方程控制系统的重要性,Schrodinger方程的能控性和稳定化等基本概念,双线性Schr
核酸是生物体内极其重要的生物大分子,是生命中最基本的物质之一。它不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,在生长、遗传、繁殖、变异等一系列重大生命现象中起决定性的作用。根据其化学组成不同可分为两类:脱氧核糖核酸(DNA)和核糖核酸(RNA)。从单分子水平对核酸和其它分子之间的相互作用进行研究有助于人们深入地理解与调控这些重要的生命过程,是人们解开生命奥秘的关键所在。基于原子力显微
职业倦怠是个体在重压下产生的身心疲劳与耗竭的状态,教师的职业特点等原因导致中小学教师的职业倦怠问题日趋严重。基于此,本文采用教师职业倦怠量表(MBI-ES)对兰州某学校107名教师进行调查研究,调查发现:职业倦怠感性别差异显著,男教师倦怠感强于女教师;从事教育工作的年限与倦怠感呈正相关;身体健康状况与倦怠感呈负相关;是否获得市级教学荣誉对于倦怠感存在影响;周课时量与倦怠感呈正相关;年龄、班主任工作
沙尔湖煤田位于吐哈盆地鄯善县东部,是我国特大型煤田之一。由于这一地区处于荒无人烟的戈壁滩,以往的地质调查主要是围绕着煤炭资源的勘探和开发展开的,有关地层古生物方面的研究程度较低。本文首次对新疆东部沙尔湖煤田中侏罗世植物化石进行了系统报道和较详细的研究,取得的主要成果包括:1.首次详细描述了新疆东部沙尔湖煤田中侏罗世18属29种植物大化石和34属48种孢粉化石,并对植物群的组成和性质做出分析和探讨。
碲化锡(SnTe)是一种典型的窄带隙四六族半导体材料,最近理论和实验研究发现它还是一种新型拓扑绝缘体。然而,SnTe高压结构的不确定性严重阻碍了人们对其电子性质的进一步探索。本文我们利用高压同步辐射实验结合第一性原理理论计算方法研究了SnTe的高压结构、相变机制和电子性质随压力的变化行为,得到以下创新性成果:1.通过对高压X-ray衍射实验数据、理论计算的热力学稳定性(晶体结构预测)、能垒以及声子
非局部抛物型方程作为一类重要的积微分方程,来源于许多领域,如相变,薄膜的外延增长等,在过去的十几年里,积微分方程得到了广泛的关注,本文将研究一类非局部抛物型方程的若干问题.由热力学原理,我们有m是迁移率或者扩散系数.对流项β·▽B(u)[6,19].我们定义非局部化学势能我们得到如下非局部抛物型方程其中H(u)=∫ΩJ(x-y)dyu(X)-∫ΩJ(x-y)u(y)dy,B(U)=|u(X)|q,
本文在重尾索赔下,研究了四种基于整值时间序列离散风险模型的渐近推断问题.首先,考虑了索赔计数过程满足Poisson INMA(1)序列口Poisson INMA(q)序列离散风险模型,在C族重尾索赔下建立了累积索赔总额的精细大偏差,并借助大偏差的结果给出有限破产概率的渐近等价形式,同时利用蒙特卡洛法模拟破产概率并与我们的渐近结果比较,验证了结论的有效性.然后,又分别考虑了索赔计数过程满足Poiss
1a ú1.ú1±¢á-é è§.è ü,o£△u=Fu(x, u, v), x∈,△v=Fv(x, u, v), x∈,u=v=0, x∈,§D è¥ìú ê R2N-.,¨,KryszewskiSzulkinMorse-, o T μ é è§.T,£u+V (x)u=f(x, v), x∈RN,v+V (x)v=g(x, u), x∈RN,ú êN≥3, V (x)∈C(RN, R),Y§f