【摘 要】
:
近年来,重大传染病疫情因其持续时间长、扩散范围广、危害程度高、防控难度大等特点,给世界各国经济发展及人民生活带来了严重威胁,成为各国公共卫生安全防治的主要议题。而由于疫情的突发性和不确定性,人们往往无法预测疫情的发生时间与强度,因此在应急物资调度初期及应急高峰期由于物资生产与储备不足或调度不及时等原因,应急医疗物资短缺问题时有发生。同时,随着疫情强度和扩散范围的变化,传染病应急物资调度往往具有动态
论文部分内容阅读
近年来,重大传染病疫情因其持续时间长、扩散范围广、危害程度高、防控难度大等特点,给世界各国经济发展及人民生活带来了严重威胁,成为各国公共卫生安全防治的主要议题。而由于疫情的突发性和不确定性,人们往往无法预测疫情的发生时间与强度,因此在应急物资调度初期及应急高峰期由于物资生产与储备不足或调度不及时等原因,应急医疗物资短缺问题时有发生。同时,随着疫情强度和扩散范围的变化,传染病应急物资调度往往具有动态性特征,面对动态更新的疫情数据及变化的物资供需状态,保障应急医疗物资调度的时效性和公平性,对于有效控制传染病疫情扩散,减少因传染病造成的生命及经济损失具有重要意义。本文以重大传染病疫情发生后的应急医疗物资保障为背景,综合考虑物资供需动态性、物资分配公平性、物资调度时效性及疫区应急优先级等因素,研究重大传染病疫情发生后应急医疗物资的分配与调度问题。本文的主要研究思路与内容如下:首先,本文从传染病应急物流的概念、特点、流程出发,分析了传染病应急物流与自然灾害类应急物流的主要区别,对传染病应急医疗物资需求和传染病应急物资调度相关理论进行了介绍。在此基础上,从疫情扩散风险、应急反应能力、疫情扩散强度三个维度选取9个指标构建疫区应急优先级评价指标体系,并利用熵权-TOPSIS方法进行动态评级;其次,考虑物资充足和物资短缺两种供需情境下应急医疗物资调度决策机制和决策内容的差别,基于供应点-中转点-需求点三级供应网络,考虑应急优先级对物资分配数量、物资调度时间以及车辆装载顺序的影响,分别构建两类供需情境下的单品类应急医疗物资单周期调度模型,并设计遗传算法求解;再次,考虑传染病应急医疗物资调度的动态性,综合两类物资供需情境,以物资调度时间和物资满足率优化为目标,考虑车辆运力、装载容量、节点处理能力、供需动态更新、物资流量流向等约束,构建考虑供需状态动态更新的多品类应急医疗物资混合动态调度模型,对调度周期内应急中转点的设施选择以及应急医疗物资的分配和调度方案等进行综合决策,设计遗传算法进行求解;最后,以2020年新冠肺炎疫情为例,基于案例数据对本文构建的单品类和多品类调度模型进行算例验证,并对模型中部分参数进行敏感度分析,验证本文模型的合理性,并得出相关结论。本文包含图24幅,表39个,参考文献96篇。
其他文献
随着工业化进程的加快,全球气候的变暖与环境问题的频发,各国倡导降低能源消耗、减少碳排放。物流配送业也是碳排放的主要来源之一,企业在安排货物配送过程中也要考虑环境方面的因素,从车辆调度路径规划方面考虑碳排放的因素。另外随着城市规模的扩大,城市道路的交通拥堵等状况的频发,以及城市的环保要求下,各个城市对载货车辆的配送都出台了许多管控措施,如限号、限时、限区域配送等。企业要在城市各种限行政策下满足各种客
近年来随着社交网络OSN(Online Social Network)的不断兴起,微博平台也日渐成熟。随着大量用户的涌入,恶意营销用户也随之而来。恶意用户将商品信息在社交网络中大肆传播,诱导用户购买以从中获利。其行为严重污染微博社交环境,影响用户体验。如何从用户量巨大的微博平台中识别出恶意营销用户,一直是恶意用户识别领域需要精细化处理的问题。目前该领域的研究中大多采用集成学习算法。使用人工选取的特
随着国际贸易的发展与信息爆炸时代的到来,表单由于其简单直观的特点,在交通物流领域得到了广泛的应用,同时在金融和医疗等领域也变得越来越不可或缺,如物流表单、收据和简历等。随着各行各业的智能化与数字化改革,迫切需要实现多类型表单的自动化抽取,将表单中的信息保存成结构化数据便于留存与检索。以交通物流表单为例,在实际应用中,国际物流表单大多样式复杂且种类繁多,而目前投入应用的表单关键信息抽取算法通常只针对
本文结合太原市轨道交通2号线PPP项目实例研究运营组织优化的策略,研究以太原公共交通控股(集团)有限公司(以下简称:公交公司)和太原中铁轨道交通建设运营有限公司(以下简称:轨交公司)在太原地铁2号线开通后运营组织优化的实际博弈场景为依托,根据场景中轨道交通与常规公交的竞争和合作关系构建了运营优化博弈模型,利用实际运营数据演算模型参数,求解了在实际博弈场景下的Nash均衡解,验证了模型的合理性;利用
随着教育信息化的不断发展,许多学校和教育企业为了更好地管理学生和教师信息,开始使用数字化的教育信息管理系统。然而针对小学生的学生手册,仍以纸质表格的存储形式为主,若将其人工录入至系统中,则需要耗费大量的时间和人力。为了减少时间成本和人力成本,本文设计并实现了一个基于深度学习的学生手册识别系统,实现了学生手册信息的自动录入。本文的学生手册识别系统设计与实现以特定的学生手册为目标。常见的表格定位算法和
目标跟踪是计算机视觉领域的重要研究方向,因其涉及到目标尺度变化,快速运动,背景干扰等实际因素的影响及其任务的特殊性,目标跟踪成为了计算机视觉领域最具挑战性的任务之一。因此,如何借助深度学习设计一个更加精准的跟踪模型成为了当前目标跟踪任务的研究热点。近年来随着深度学习的不断发展,以及深度神经网络所具有的独特优势,为解决目标跟踪任务中遇到的难点问题提供了坚实的基础。本文对目标跟踪任务中遇到的问题进行了
近年来,多智能体系统(MAS)的一致性控制问题受到了工程学、社会科学、数学、物理学等方面学者的广泛关注。相比于单系统而言,多智能体系统由于其智能体间的相互协作,可以被用来解决很多单个的智能体难以完成的任务,更具有实用性。而脉冲控制作为一种特殊的非连续控制手段,具有效率高、维护费用低、可靠性高、鲁棒性好、方便易操作的特点。已经在肿瘤治疗、保密通信技术、生物种群控制、自动驾驶设计、电力系统调节等方面得
路径规划是移动机器人领域的关键问题之一,主要涉及移动机器人在工作空间中,从当前位置运动到目标位置的可行路径搜索。路径规划问题针对的环境可以是静态的,也可以是动态的。当环境中存在动态障碍物时,路径规划算法不仅要找到最优路径,而且要保持对最优路径的跟踪,以足够高的频率实时更新其路径,以保持对周围事件的响应。本文通过对已有的D*lite规划方法的分析,对该方法中的一些不足提出了相应的改进和优化。具体包括
随着扫描测量和计算机技术的不断发展,日常的二维图像测量扫描已经不能满足人们测量的要求,点云数据是三维图像存在的比较常见的形式,相对于二维数据,它能够更加高效存储三维物体详细信息,而激光雷达、Kinect等新型的三维传感器出现,使得点云数据收集会更加的便利,三维点云应用也会越来越广泛。但是目前的点云数据仍具有无序性、稀疏性的特点,并且一些小规模的点云数据集包含的信息及数量有限,所以通过点云数据预处理
计算机硬件计算能力的大大提高和大规模数据集的不断出现,让深度学习技术也在不断迈入新阶段。深度学习系统的发展在带来机遇的同时,也给其测试技术带来了新的挑战。与传统软件相比,深度学习系统在内部结构与外部表现方面均存在很大的差异,无法直接将传统软件测试技术中的白盒测试方法应用于深度学习系统。目前,已有多个关于深度学习系统的白盒测试覆盖准则被提出,但准则在实际系统中应用的有效性尚有待检验。本文主要研究深度