基于无人机影像的梁桥表面病害检测研究

来源 :重庆交通大学 | 被引量 : 0次 | 上传用户:lbtcdn
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近几十年来,我国公路桥梁建设得到了飞速的发展,桥梁的建设期占桥梁整个生命周期相对较少。同时,随着我国经济的迅速发展,桥梁承载的交通量也急剧增加,其中过重车辆增多和超载现象频发,对桥梁的损害尤为严重。这对桥梁本身的性能要求越来越高,桥梁的检测和维护工作变得尤为关键。传统桥梁检测存在很多的盲区导致检测不够全面,检测过程需要人员高空作业存在较大的安全隐患,检测方式的效率和效益不高,还经常影响桥梁所在路段的正常交通。
  本文将无人机应用于梁桥的表面病害检测,由于桥梁的种类繁多,在某一类桥梁适用的无人机检测方法不一定适用于其他种类的桥梁,故仅选用梁桥作为研究对象。制定了梁桥表面检测无人机外业飞行方案,找到一种合适梁桥表面影像采集的无人机,可以快速、高效、安全的获取梁桥表面病害无人机影像。在梁桥众多病害中,裂缝对梁桥的使用寿命危害是最大的,也是梁桥表面检测的重点。将获取的无人机梁桥表面裂缝影像进行一系列图像预处理,然后利用计算机自动识别,提高了梁桥表面裂缝病害识别准确率和效率。最后综合利用裂缝识别的信息和三维实景影像对梁桥表面病害进行全面的检测和分析。以下是本文的三个研究成果:
  (1)梁桥表面病害无人机影像的外业采集方案
  由于梁桥结构的特殊性,传统的无人机外业采集方法是无法满足梁桥检测的要求。本文按梁桥上部结构、下部结构、桥面系的不同特点研究了一套无人机梁桥病害检测采集方案,快速有效的完成梁桥表面病害检测,避免检测盲区的出现。
  (2)无人机影像预处理方法
  由于较多外界因素的影响,如大气扰动、天气以及无人机自生成像系统等人为不可控因素,会使得获取的图像中存在噪声严重、纹理不突出等问题。首先将裂缝影像进行灰度化,然后利用直方图均衡化和对比度增强改善由于光线不足导致的裂缝和周围背景灰度区别不大的问题,最后进行影像去噪,改善了影像的质量。
  (3)梁桥裂缝影像计算机自动识别系统开发
  有研究表明,混凝土桥梁桥的损坏有90%以上是由裂缝引起的。对已图像预处理得到的裂缝影像进行二值化,然后对裂缝目标进行识别和特征值的计算,达到对裂缝信息的提取和分析,这样可以提高裂缝识别的准确率和效率。利用MATLAB进行梁桥裂缝识别系统开发,实现计算机自动识别梁桥裂缝影像。
其他文献
醛(酮)的还原胺化反应是制备胺基化合物的有效方法;其中,所制备的叔胺类化合物被广泛应用于药物、农用化学试剂、天然产物、小分子生物探针、表面活性剂、有机金属配合物中的配体以及有机合成中的有机催化剂等领域,目前常用的均相催化方法具有反应条件苛刻、提纯困难和对环境不友好等问题,采用纳米氧化物作为催化剂具有条件温和、产物容易分离和对环境友好的优势;因此,开展纳米氧化物高效催化醛(酮)选择性还原胺化过程的研
学位
铜基纳米材料可广泛应用于光电催化、抗菌等多个领域。本文采用绿色液相还原法合成了系列Cu_2O纳米材料及Cu纳米材料,通过水热法合成了CuO微球。利用SEM、XRD、TEM、XPS、紫外-可见漫反射吸收光谱和N_2吸附-脱附等测试对合成样品进行了表征,探究了样品的光催化及抗菌性能。具体如下:1.以抗坏血酸为还原剂,以葡萄糖为模板剂,通过液相还原法在室温下制备了不同粒径的Cu_2O纳米材料。通过一系列
学位
环境友好、能耗低的电容去离子技术(CDI)是一种能够从水溶液中高效去除带电离子的方法,被广泛用于咸水淡化。多孔碳具有高比表面积,良好的孔径分布和电子传导性,被广泛用于制造CDI电极。多孔碳的结构是决定CDI的吸附量,脱盐速率和能耗的关键。因此,论文主要以密胺树脂(MF)为模板,对其进行包覆和改性制备了一系列多孔碳球,并研究了制备条件与其结构、除盐性能的关系。论文研究内容如下:1.本章以MF为模板,
学位
电容去离子(CDI)是一种在电场作用下吸附咸水中的离子使其净化为淡水的一种技术。CDI装置在常温常压下运行,避免了大量的能源消耗。它的关键部件是吸附电极,因此电极材料的组成、结构和电导率等特性对CDI的脱盐能力和能效具有关键性的影响。因此,论文合成了花状、球状的聚酰亚胺前驱体,碳化得到一系列具有不同比表面积和孔径分布的氮掺杂多孔碳。在1.0 V电压的作用下,它们表现出较好的吸附容量(SAC)和较高
学位
生物胺(BA)通常是由生物代谢中的氨基酸降解产生的,可以用作食物腐败和各种疾病的重要生物标记。由于社会上越来越多的食品安全问题和人们对健康的关注,开发一种快速,简单和准确的检测生物胺的方法非常重要且势在必行。尽管已报道了多种检测氨气的方法,例如气/液相色谱法,电化学系统,比色阵列和气体传感器等方法,但其中大多数都有一定局限性,包括:复杂的组件、大型固定仪器和费时的分析过程。因此,开发具有选择性优异
学位
安全处置具有高放射性的核废物是推进核技术发展的关键之处,将高放射性核素固溶到陶瓷晶格位点具有良好的长期安全性。近年来众多研究聚焦于具有优异辐照稳定性、化学稳定性等特性的烧绿石型Gd_2Zr_2O_7陶瓷,其被视作固化锕系核素的理想宿主矿物。随着纳米材料的兴起,具有大量晶界、晶面的纳米材料有望提升辐照稳定性,而有关Gd_2Zr_2O_7纳米晶陶瓷的研究鲜有报道。因此,本研究利用自蔓延化学炉结合快速加
学位
自修复聚合物凭借其结构网络中的动态共价键和非共价键相互作用对损伤的材料进行修复,在一定条件下自主或非自主的恢复部分或全部性能。聚氨酯材料(PU)刚柔度可调谐、基体材料种类繁多、应用领域广阔,将其作为自修复柔性基材与敏化纳米材料结合制备响应复合材料有着重要的研究价值。智能响应材料能够对外界环境的特定刺激(如力、温度、湿度、光、PH、电等)做出特异性识别,并产生特定的应激反应。本论文通过简单易行的方法
学位
过去几十年里,矿物能源的大量消耗导致了严重的环境问题,因此我们必须致力于发展和建设可持续的、无碳的能源体系。氢气(H_2)因为零排放无污染等优点,被认为是一种重要的能量载体,有着广泛的应用。氢气的高效储能可以通过催化剂的结构设计,在电催化过程中将电能高效转化为化学能,即通过电催化高效还原质子而实现。在以往的研究中,铁、钴、镍的配合物受到了特别的关注,而锰虽然是地壳上继铁、钛之后最为丰富的金属元素之
学位
CaCO_3基生物矿物在自然中广泛分布,珍珠母是其中最为典型的代表。在珍珠贝壳母中,文石含量约为95%,它与5%的有机质一起组成了最为经典“砖-泥”结构,从而带来了优异的机械力学性能,其生物矿化机理和仿生合成研究也因此成为仿生矿化领域的热点课题。从有机基质到无机离子,生物矿化机理研究获得巨大的成功。在此基础上,仿生矿化合成也获得了长足的进步。但是,目前的研究成果与珍珠母结构和性能的全仿生仍有较大差
学位
目前在核电含氚废水处理方面,还面临巨大难题,采用疏水催化剂铂/苯乙烯-二乙烯基苯共聚物(Pt/SDB)的氢-水液相催化交换(LPCE)技术途径,有望发挥重要作用。但疏水载体SDB还存在易破碎、长期使用疏水性下降、与催化剂Pt结合较差等缺点。因此,本文拟采用功能化改性及杂化改性等手段,针对性地提高SDB载体的性能,并对合成SDB及SDB改性载体进行结构表征与性能评价。氨基化改性SDB的合成研究:以悬
学位