论文部分内容阅读
油气勘探开发环境的愈发复杂,这对钻井工艺提出了更严格的要求。油价低迷的经济环境下,如何降低油气开采成本是钻井行业必须要面临的问题。机械式垂直钻井技术依靠偏重块的动力作为纠斜的动力,仅依靠偏重块在重力作用下的偏转控制推靠机构进行连续纠斜,具有成本低、设备简单、可靠性好、能在高温环境下工作等优点,可以广泛应用于垂直钻探领域。机械式自动垂直钻具愈发成为降本增效的上佳选择。本文针对机械式垂直钻井工具提出了一种新的控制机构——喷嘴—水力平衡涡轮—盘阀控制机构(Nozzle hydraulic balance turbine disc valve control mechanism,简称为NTD控制机构)。研究该机构的性能并进行优化对提高机械式垂直钻井技术水平有重要意义。本文首先介绍了CFD数值模拟的技术原理,然后针对NTD机构的主要构件进行设计,最后利用CFD方法对NTD机构进行了数值模拟以探究其性能。NTD机构的启动性能跟涡轮的受力直接相关。涡轮叶片角度的变化、流体速度、喷嘴直径、喷嘴位置是影响水力涡轮的性能主要因素,其中随着随着叶片角度的增加,涡轮扭矩先增加后减少,随着流体速度、喷嘴直径的及喷嘴位置的增加,涡轮所受扭矩不断增加。喷嘴形状会影响射流的特征,收缩状的喷嘴能提供更好的动力,但会加剧对涡轮的冲蚀。喷嘴在偏重系统的带动下而运动,而在喷嘴射流作用下涡轮会带动盘阀跟随喷嘴的运动而运动,这称之为NTD机构的随动性。随动性是机构起作用的最主要特性。当喷嘴停止运动时,涡轮会继续地左右旋转,但最终会稳定下来。喷嘴偏离平衡位置越远,稳定的时间越长。在摩擦力的影响下,涡轮停止运动的时间小于无摩擦工况,且停留的位置会偏离平衡位置一定的角度,这就是NTD机构的位置控制精度极限。该极限与水力平衡涡轮的对称位置的构造有关。NTD控制机构实现了偏重平台与上盘阀之间的"软"连接,可消减上下盘阀的摩擦阻力及底部钻具振动对偏重平台的影响。该机构能有效提高钻井工具的控制精度,对提高我国垂直钻井工具的技术水平有重要意义。