【摘 要】
:
近年来,非晶半导体薄膜晶体管(thin-film transistor,TFT)由于具有良好的机械柔韧性、与任意基板的兼容性、低成本和低温下大面积可加工性等特点,成为了学术研究和工业应用的热点,广泛应用于可穿戴传感器、医用贴片、可弯曲显示器和一次性射频识别(radio frequency identification,RFID)标签等。TFT电路设计复杂度远小于硅集成电路。然而现有的商业化EDA工
论文部分内容阅读
近年来,非晶半导体薄膜晶体管(thin-film transistor,TFT)由于具有良好的机械柔韧性、与任意基板的兼容性、低成本和低温下大面积可加工性等特点,成为了学术研究和工业应用的热点,广泛应用于可穿戴传感器、医用贴片、可弯曲显示器和一次性射频识别(radio frequency identification,RFID)标签等。TFT电路设计复杂度远小于硅集成电路。然而现有的商业化EDA工具通常是为复杂硅集成电路开发的,而且由于材料特性的差异,TFT的电学特性与金属氧化物场效应晶体管(metal-oxide-semiconductor field effect transistor,MOSFET)有很大差别,传统的MOSFET模型并不适用于TFT技术,因此目前的TFT电路设计主要通过手动设计实现,往往耗时且不能实现电路的最佳性能。为了提高TFT电路设计的效率,需要一套专门针对各种TFT技术的设计工具,主要包括TFT紧凑性器件模型、电路分析模型等。目前TFT器件及电路分析模型的研究往往集中在阈值以上区域,而随着人们对能源的需求急剧增加,低功耗设计技术成为一个日益重要的需求,这对TFT亚阈值区域的准确建模提出了更高的要求。本文将亚阈值电流分为与栅电压呈指数关系的扩散电流和与栅电压呈幂律关系的漂移电流,分别进行推导,最后通过连接函数组合成为一个连续的解析公式,建立了在亚阈值区域具有更高准确度的TFT紧凑性器件模型。然后基于该器件模型建立了两种单极性反相器的输入输出模型,并对反相器的重要性能指标——噪声容限、电压增益、传播延迟时间进行了计算,得到了可以描述电路性能的重要指标与工艺参数、设计参数之间关系的电路分析模型。最后,通过与实验数据、仿真结果对比,验证了器件模型与电路分析模型的准确性和实用性。该模型可以有效地指导电路设计,对于实现TFT技术的广泛应用具有重要意义。
其他文献
试验采用PLGA与PCL-diols之间酯化反应为基础,设计合成PLGA/PCL热响应形状记忆支架,在探索不同交联密度及PCL-diols分子量情况下,调控热响应形状记忆支架的复形温度,调整配方后使成品支架的复形温度稳定在37℃,以满足在人体温度中复形的需求。实验测试PLGA/PCL热响应形状记忆支架的形变及复形时间和形状稳定性,并进一步进行体外试验测试PLGA/PCL热响应形状记忆支架接种大鼠间
心血管疾病是世界上非传染疾病致死的首要原因,植入人造血管是其治疗手段之一。研究表明,在人造血管管腔内表面形成完整的单层内皮细胞,能够有效遏制血栓形成并减少内膜增生,使人造血管植入体内后保持长期通畅。而内皮细胞在人造血管内表面粘附能力较差,难以抵抗血流冲击,因此通过对支架内表面的形貌进行调控以提高其粘附能力,是人造血管研究中的关键性问题。本课题利用静电纺丝技术构建具有不同表面微纳结构的玉米醇溶蛋白纤
脑卒中具有高致残率的特点,超过60%的患者因为运动功能受损而影响正常生活。虽然功能性电刺激(FES)作为一种应用于脑卒中运动康复的有效技术手段,但多肌肉协同激活的电刺激模式仍然是一个难题,本文研究方向是基于肌群协同理论的功能性电刺激策略的优化及在脑卒中上肢康复中的应用。首先,本文基于肌群协同理论对表面肌电信号重构电刺激模式的方法进行探索,通过探究在不同参数重构的电刺激模式下患者产生的即刻运动效果,
突发性心脑血管疾病对老年人的健康危害非常大,一旦发病,很有可能会致死。但是如果发现及时,尽早进行抢救,往往可以挽救发病者生命,因此24小时连续心率血压监测十分有必要。近年来,很多学者在研究实现可穿戴的设备,通过光电容积脉搏波(PPG)来间接获取心率和血压信息,以实现长期实时监测的目标。本研究课题设计了一款应用于可穿戴24小时连续心率血压监测系统的低功耗高集成度PPG信号采集芯片。芯片集成了模拟前端
目的:为了促进牵张成骨过程中成骨及硬化过程,将高纯镁棒应用于大鼠股骨牵张成骨模型。通过影像学、组织学、生物力学研究高纯镁对牵张成骨的影响。利用PCR-array探索潜在机制并利用Western Blot及组织学验证。从而为临床中牵张成骨治疗提供经济有效的辅助治疗方法。方法:制作大鼠股骨牵张成骨模型。制备直径为1mm,长度5mm高纯镁棒。大鼠股骨牵张成骨模型随机分为三组:(1)高纯镁组;(2)不锈钢
自石墨烯被发现以来,低维纳米材料(low-dimensional nanomaterials,LDMs)因其独特的物理特性和光电特性引起了广大研究者的关注。与此同时,全光通信和全光信号处理因其避免了光电信号之间的转换在全光系统中处于重要的地位。基于低维纳米材料独特的光电特性来实现相关功能的全光逻辑器件已经成为了重要的研究方向。本论文主要研究基于低维纳米材料的热光效应实现的全光逻辑器件。在本论文中,
在泌尿内窥镜的检查和手术中,输尿管开口的检测和定位至关重要。但由于输尿管开口外观表现因个人而异、因时间而异、因不同病理因素而异,精准查找和定位输尿管开口有时会很有挑战性。为了自动识别手术视频中的不同类型的输尿管开口,本文提出了基于深度学习的输尿管开口检测和跟踪系统。该框架主要由预处理部分、输尿管开口检测模型、跟踪模型三个组件组成。对于预处理部分,本文应用了常规数据增强策略和特定数据增强策略来增加训
磁共振成像作为一种最先进的医学成像技术之一,已经深刻地改变了人体组织和器官解剖和功能的临床诊断,但目前的磁共振成像技术在分子水平上对诊断的影响要小得多。化学交换饱和转移成像是一种新兴的可以提供人体内分子水平对比信息的磁共振成像技术,与磁共振成像中其他对比机制不同,其主要是根据共振频率的不同,在可交换质子的化学位移处检测携带了可交换质子的大分子化合物,这使其成为一项独特的磁共振分子成像技术,在一些应
随着信息技术的不断进步,全球数据中心和高性能计算中心都面临着通信带宽严重不足、系统功耗不断增大的挑战。在传统的光互连通信技术中,通过采用更高阶的调制方式可以有效地提升通信带宽,降低互联能耗。其中,采用四级幅度脉冲调制(Four-level pulse-amplitude modulation,PAM-4)的硅光发射器集多阶调制技术和电光集成技术于一体,在传输速率、通信功耗和集成度上具有明显的优势,
随着集成电路工艺技术的不断发展进步,基于CMOS工艺的光、电器件在同一块芯片上集成的技术已经开始走向成熟,使得基于CMOS工艺的电光集成电路(Electronic-photonic Integrated Circuit,EPIC)技术已经成为可能。EPIC技术结合了光互联的高带宽、低损耗性与CMOS集成电路的大规模集成等优点,可以较为容易的实现高速率、高带宽、多通道、低功耗的电光互联接口,从而成为