论文部分内容阅读
本文提出了一种新型模块化机器人架构的设计方法,该架构以通用性、开放性和标准化为基础,设计了各子系统需要考虑的设计原则,如结构分离、功能分离、复用分离、开放和可扩展性原则等。同时,本文还设计了模块化功能封装的相关技术,并定义了子组件的实现方式。针对软件系统,提出了基于ROS的机器人模块化控制软件设计方法,对系统架构和底层组件从定义、分类以及通信等各方面均作了详细的阐述。对于在设计过程中各软件模块架构和模型进行了说明。针对机器人控制某些组件的实时性问题,也提出了对应的解决办法。以模块化机器人设计系统规范为指引,在不同平台对本文提出的控制系统进行实践和验证:1)模块化即插即用机械臂系统:介绍了机械臂Rinar的硬件和软件系统,突出了模块化系统中即插即用的特点,同时体现了模块化系统的标准化、开放、可扩展的特点。2)模块化移动机器人系统:描述了模块化过程中硬件划分和软件分层结构的构成,以及以PC为架构的硬件系统功能区分和分层后各层次实现的功能。3)多机器人编队系统:通过模块化设计思路,将单个机器人作为独立的模块化节点,在控制中采用分层控制方法,提高控制的有效性和灵活性。同时,针对运动轨迹任务,将模块化机器人系统映射到表征空间进行分析,解决在表征空间中如何将不可行任务,转换为可行任务的问题,并通过实验证明了该方法的可行性。4)无人机系统:为体现模块化系统的通用性,设计了开放的无人机控制系统,并针对典型的抗干扰问题,提出了新的控制方法。通过将本文提出的模块化系统设计应用于不同类型机器人平台上,评估了该系统的整体性能,证明了本文提出的模块化系统具有非常高的适用性和先进性。该系统不仅可应用于功能单一的机械臂系统、移动机器人,也可以在机器人编组系统中协助机器人整体完成复杂任务。同时,对复杂程度更高的无人机系统,该系统也可充分满足其对实时性和稳定性的要求。通过以上基于模块化智能体结构的机器人设计和控制,把单机器人面向任务的结构设计和重构与多机器人协调系统的自组织及相应控制问题统一起来。该系统结构可为未来机器人或多机器人系统实现复杂任务提供有效指导和参考。