【摘 要】
:
现代战场电子环境日趋复杂,雷达干扰和抗干扰技术在斗争中不断演化。其中,欺骗式干扰,尤其来自主瓣方向,是一种极具威胁的干扰方式。随着数字射频存储器(DRFM)技术日渐成熟,显著增强了欺骗能力。通常,干扰设备对雷达系统发射波形进行复制并延迟转发产生虚假目标,给鉴别真、假目标信号及干扰抑制带来了困难。机械扫描雷达到相控阵雷达直至多输入多输出(MIMO)雷达的革新,增加了系统可控自由度,扩展了阵列雷达系统
【基金项目】
:
国家自然科学基金重点项目“频率分集阵基础理论、关键技术与雷达应用研究”;
论文部分内容阅读
现代战场电子环境日趋复杂,雷达干扰和抗干扰技术在斗争中不断演化。其中,欺骗式干扰,尤其来自主瓣方向,是一种极具威胁的干扰方式。随着数字射频存储器(DRFM)技术日渐成熟,显著增强了欺骗能力。通常,干扰设备对雷达系统发射波形进行复制并延迟转发产生虚假目标,给鉴别真、假目标信号及干扰抑制带来了困难。机械扫描雷达到相控阵雷达直至多输入多输出(MIMO)雷达的革新,增加了系统可控自由度,扩展了阵列雷达系统对目标和环境的信息获取能力。尤其是近年来以频率分集阵(FDA)为代表的波形分集阵雷达,丰富了MIMO雷达技术而倍受关注。FDA通过发射阵元之间的频率差异,形成了距离-角度-时间依赖的发射方向图,增加了系统设计和信号处理的灵活性。通过结合发射波形可分离设计,在接收端进行处理后可获得额外的距离维可控自由度,为解决主瓣干扰抑制难题提供了一条有效途径。论文以现代复杂电磁环境下雷达主瓣欺骗式干扰抑制这一世界性难题为牵引,在国家自然科学基金重点项目“频率分集阵基础理论、关键技术与雷达应用研究”等支撑下,开展波形分集阵雷达抗欺骗式干扰研究,揭示波形分集阵雷达同时利用角度和距离信息分离目标与干扰的原理,并验证其距离维可控自由度在抗欺骗式干扰方面的性能,主要内容概括如下:1.针对主瓣欺骗式干扰抑制问题,提出了适合工程应用的非正交波形FDAMIMO雷达基于联合发射-接收空间频率域辨识真、假目标的自适应波束形成抗干扰方法。由于假目标呈伪随机分布,进一步设计了一种鲁棒的非一致样本检测(NSD)器,具体包含两步:1)选择包括信号和/或干扰的非均匀样本。2)利用空间平滑法滤除包含目标信号的样本。从而实现对干扰加噪声协方差矩阵的精准估计。2.针对FDA-MIMO雷达自适应波束形成抗干扰方法中涉及样本挑选的难题,提出了一种FDA-MIMO雷达基于非自适应波束形成抗主瓣欺骗式干扰的方法。该方法通过合理设计频率步进量,利用非自适应方向图波束置零来抑制假目标。然而,实际情况中,由于假目标存在距离量化误差、角度误差以及频率步进量误差而偏离其理论零点,该方法对此类误差无自动调节能力。3.针对仅假目标存在模型偏差而导致非自适应波束形成方法抗干扰性能降低的问题,提出了一种基于虚拟干扰的精准控制方向图响应方法来提高FDA-MIMO雷达非自适应波束形成方法的稳健性。通过在假目标零点周围施加具有特定功率值的虚拟干扰展宽方向图零点,进一步通过预设宽零点波束形成(PBN-BF)算法设计了发射-接收二维(2-D)波束形成器的最优权矢量,从而提高了对假目标的抑制效果。4.针对真、假目标同时存在模型偏差而导致非自适应波束形成方法抗干扰性能降低的问题,提出了一种基于权矢量正交分解和斜投影的精准控制方向图响应方法来提高FDA-MIMO雷达非自适应波束形成方法的稳健性。首先利用权矢量正交分解的方式精准控制方向图在单个区域的响应,再利用斜投影算子构建的“选择矩阵”,将方向图各区域对应的子权矢量进行合成,最终形成具有平顶主瓣、宽零点以及低副瓣的收发2-D方向图,提高了真实目标的输出增益和抑制假目标性能。5.针对主瓣欺骗式干扰抑制问题,提出了基于联合发射、接收空间频率及脉冲三维域辨识真、假目标的阵元-脉冲编码(EPC)-MIMO雷达非自适应波束形成方法。根据来自不同距离模糊区对应的等效发射方向图主瓣的指向差异进行真、假目标鉴别,通过合理设计编码系数对来自特定距离模糊区的假目标进行非自适应方向图置零。进一步当真、假目标同时存在角度偏差时,利用基于权矢量正交分解的预设方向图综合(PBPS)方法形成具有平顶主瓣、宽零点以及低副瓣的收发2-D方向图,提高了真实目标的输出增益和假目标抑制性能。
其他文献
绚丽壮观的极光现象多发生于高纬度地区,源于来自太阳风和磁层的能量粒子在极区大气沉降时与中性粒子的碰撞反应,为揭示其成因机理所实施的大量科学观测包括原始目测到当前常见的光谱测量,而因为极光光谱能表征沉降粒子的决定性特征,所以光谱测量对进一步补充有关地球对太阳活动响应机制的相关知识来说十分重要。复杂摄谱仪生成的极光光谱数据属于除空间信息外还包含极光瞬态高分辨谱信息的超光谱数据,尽管该数据具有极高的研究
非线性系统控制理论一直是近几十年来控制领域研究的热点课题之一,尤其是针对不确定非线性系统,基于神经网络和模糊逼近的自适应Backstepping方法已经取得了很大的进展,但还有大量问题需要进一步研究和探索.本文基于Backstepping方法,重点研究其在纯反馈受约束系统和非三角结构受约束系统中的推广,结合自适应控制理论,神经网络和模糊逻辑系统逼近理论,关联大系统分散控制理论,随机微分方程稳定性理
随着人工智能、机器视觉、深度感知和传感等技术的发展,车辆从传统的出行交通工具逐渐演变成具备智能和互联计算系统的智能网联汽车。然而,智能网联汽车上的新型车载应用(如激光雷达、监控视频、在线应用、高清地图等)对网络和计算性能有较高要求,这对现有车联网络造成了极大的挑战。虽然云计算的引入缓解了部分数据处理压力,但其时延较长。边缘计算架构具有灵活的资源管理方式和快速的系统响应等优良性能,近年来备受关注。因
对称锥互补问题是一类重要的均衡优化问题,在经济、通信工程、交通等领域有着广泛的应用.它不仅为非线性互补问题、二阶锥互补问题、半定互补问题等优化问题提供了一个统一的研究框架,而且与对称锥线性规划、组合优化、不确定优化、均衡理论密切相关.欧氏若当代数是研究对称锥互补问题的一个重要的工具.本文基于欧氏若当代数,研究了几类对称锥互补问题,包括单调对称锥互补问题、强单调对称锥互补问题和笛卡尔P0-对称锥互补
随着信息技术、计算机技术和通信技术的持续快速发展和广泛普及,形成了具有开放性、异构性和多安全域等诸多特性的复杂网络环境。复杂网络环境中,各种信息系统协同运作使得数据在不同系统、不同域的访问流转日益频繁。数据在跨系统跨域访问流转中面临着各种安全问题,如非法流转及流转后非法操作造成数据泄露、数据泄露后难以发现等。这些安全问题严重影响了新服务模式的推广使用。针对上述数据跨域流转的安全问题,本文从访问控制
分层粗糙面及其与目标的复合散射和成像在雷达探测、目标识别、微波成像等领域有着非常重要的理论意义和应用价值。对于探地雷达探测中分层粗糙面以及分层粗糙面与埋藏目标的宽带复合电磁散射,采用时域有限差分法进行建模和计算,可以方便地处理包括不同粗糙度分层粗糙面与不同形状大小、不同介电属性目标所组成的较复杂的媒质模型,且计算精度高。时域有限差分法是一种便于处理宽带散射的时域方法,能够很好地适应探地雷达探测主要
金刚石作为超宽禁带半导体材料,具有超强的抗辐照特性、皮秒级的超快时间响应、极高的热导率、极高的击穿场强,使其成为下一代强辐射场核探测器的理想材料。随着化学气相淀积(CVD)合成金刚石技术的发展,CVD金刚石核探测器在高能粒子探测、强辐照高温环境探测、脉冲场探测等多种应用场合表现出明显优于传统硅基核探测器的性能。金刚石核探测器研究的一个关键问题,是金刚石核探测器的性能不一致性巨大且机理尚不明确,高性
干涉合成孔径雷达(Interferometric Synthetic Aperture Radar,InSAR)是一种成熟的遥感技术,它能够高度精确的测量如地形、地表形变以及冰川运动等重要的地球物理参数。雷达系统的观测信号为相位主值,因此相位解缠绕(Phase unwrapping,PU)成为InSAR技术中不可或缺的关键步骤,其求解性能也直接决定了后续遥感产品的性能。在过去几十年中,传统的单基线
自上世纪90年代以来,涡旋光束因其携带的轨道角动量,在光通信、光学微操控、光信息处理等方面具有重要潜在应用价值而得到了广泛关注。对自由空间光通信而言,涡旋光束可以极大地提高信道容量,但由于大气湍流对光束相位的随机扰动,引起了光斑扩展、光束漂移、光强闪烁等一系列常见湍流效应,此外对涡旋光束相位的扰动还会造成螺旋谱弥散、模式纯度降低,这些传输效应对光束的通信性能造成了极大的影响。为了分析大气湍流对涡旋
多输入多输出(Multiple Input Multiple Output,MIMO)雷达采用发射分集技术,可以有效实现系统自由度的扩展,其灵活可控的工作模式能够适应复杂多变的工作环境。新体制发射分集MIMO雷达成为近些年来热门的雷达系统之一,通过引入频率偏移量或时间偏移量,进一步扩展发射自由度,实现多维域性能提升,为现有MIMO雷达发射方向图设计,复杂度高,多普勒容忍性较差等问题提供了新的解决途