论文部分内容阅读
器件小型化的研究一直是集成光电子器件的发展方向之一。利用强限制光波导结构是实现器件小型化设计的一种非常有效的途径。微环谐振器(MRR)是集成光电子回路的重要组成单元,它可以实现光无源/有源器件的众多功能,因此MRR的相关研究至关重要。本论文围绕SOI(Silicon-on-insulator)和SU-8两种材料,研究了两种强限制光波导结构:SOI纳米线光波导和SU-8脊型光波导,在此基础上,对基于强限制光波导的小型化MRR及其热光特性进行了深入的理论和实验研究。集成光电子器件的理论基础是光波导电磁场理论及其数值计算方法。在此,给出了包括有限差分方法(FDM)、光束传输方法(BPM)及时域有限差分方法(FDTD)等的分析求解过程,并将其应用到光波导器件的分析研究中。本文利用分步FDTD方法对透镜光纤(TLF)与SOI纳米线光波导的端面耦合系统进行了分析:考虑到光纤的旋转对称性结构,我们采用旋转体FDTD方法对磨锥TLF和拉锥TLF的聚焦特性进行了分析,把三维问题转化为二维问题,节省了计算资源,提高了计算效率。计算结果表明拉锥TLF具有较强的聚焦特性,但是相对于磨锥TLF,其传输损耗比较大。因为SOI纳米线光波导不具备旋转对称性,所以对光纤-波导耦合系统的特性分析,我们使用了标准的三维FDTD方法。仿真结果显示拉锥TLF光斑小,与Si纳米线光波导的耦合效率高;但是耦合系统总的损耗(耦合损耗与TLF传输损耗之和)与磨锥TLF耦合时计算出的总的损耗相差不多。在热传导理论基础上建立了光波导的热学分析模型,提出了亚微米宽的新型热电极,并把它应用到SOI脊型纳米线光波导上。利用自建的热学分析模型,对该光波导结构进行了数值分析,并与传统的掩埋型光波导进行了热学性能的比较。结果显示,具有新型热电极的SOI脊型纳米线光波导结构所需电极功耗低,约为后者的1/10,响应速度快,约为后者的2倍。不仅如此,其加工工艺简单(仅需一次光刻工艺),制作成本可大大降低。在此基础上,我们对该光波导结构进行了光学性能优化,并利用MRR结构设计出一种超小型、低功耗(5mW)、大范围可调(20nm)的热光可调谐滤波器。对SOI超小型光波导器件的制作工艺进行了总结,并给出了新型热电极下的SOI脊型纳米线光波导热光器件的工艺流程。对SU-8脊型光波导(空气为波导的上包层)的制作工艺进行了研究,并对两种制作工艺(纳米压印技术和直接紫外光刻技术)进行了比较。后者工艺简单,对于我们设计的SU-8光波导结构(微米量级)仍然能够提供足够的工艺容差,因此本文中关于SU-8光器件的制作都是利用直接紫外光刻技术完成的,器件表征结果显示利用该技术能够制作出低损耗的SU-8光波导及器件,如小型化多模干涉(MMI)耦合器、MRR等。利用SU-8脊型光波导结构,通过在MMI区域引入二次曲线锥形结构,设计出一种基于GI(General Interference)干涉机制的小型化2×2 MMI耦合器,并利用直接紫外光刻技术,完成了该器件的制作,测试结果显示该器件具有损耗低、均匀性好、带宽大等优点。把小型化2×2锥形MMI耦合器引入到MRR耦合区,研制出了小型化的MRR器件,对其光学性能,包括光谱响应、偏振相关特性等进行了表征,并对其热光效应进行了实验研究,测试结果显示温度升高100℃,其谐振波长漂移量将超过10nm,该性质对于研制大范围可调谐的滤波器件十分有利。针对SU-8脊型光波导的强限制作用及MRR的谐振增强效应,我们对MRR的热光非线性效应进行了探索性实验研究,通过对测试结果的分析,我们得到了SU-8材料对红外光的吸收系数约为0.179 cm-1,为实现全光控制提供了一定基础。