论文部分内容阅读
延迟微分方程广泛应用于物理、生物、医学、工程以及经济等领域。由于方程的复杂性,从理论上很难获得它的解析表达式,所以必须用数值方法进行求解。其中数值方法的稳定性分析是一个重要部分。因对称方法具有某些良好性质,使得分析过程更加标准和方便。本文主要研究了几类延迟微分方程对称方法的延迟依赖稳定性以及中立型延迟微分代数方程块边值方法的收敛性。论文的主要内容包括以下五个方面:首先,基于线性实系数延迟积分微分方程,开展了对称边值方法的延迟依赖稳定性研究。应用包括第一型和第二型扩展梯形公式、最高阶方法和B-样条线性多步法在内的对称边值方法求解方程。利用边界轨迹技术,给出了对称边值方法的延迟依赖稳定区域。证明了在一定条件下,所有对称边值方法可以保持方程的延迟依赖稳定性。其次,基于线性实系数中立型延迟积分微分方程,开展了对称边值方法的延迟依赖稳定性研究。通过对边界曲线的性质分析,得到了对称边值方法的稳定区域的精确刻画。证明了在一定条件下,该数值方法能很好地保持原问题的延迟依赖稳定性。再次,基于线性实系数中立型延迟积分微分方程,开展了对称Runge-Kutta方法的延迟依赖稳定性研究。应用包括Gauss方法,Lobatto IIIA、IIIB和IIIS方法在内的对称Runge-Kutta方法求解方程。利用W-变换和阶星理论给出了高阶对称Runge-Kutta方法延迟依赖稳定区域的精确刻画。通过比较解析稳定区域和数值稳定区域的关系,证明了对称Runge-Kutta方法可以无条件保持原问题的延迟依赖稳定性。接着,基于一类特殊的二阶三参数延迟微分方程,开展了对称Runge-Kutta方法的延迟依赖稳定性研究。应用对称Runge-Kutta方法离散方程,给出了该数值方法的延迟依赖稳定区域。证明了任意高阶的稳定函数是对角Pad′e逼近的对称Runge-Kutta方法可以无条件保持方程的延迟依赖稳定性。最后,构造了块边值方法来求解1-指标中立型延迟微分代数方程,将块广义向后差分公式的收敛性分析推广到一般的块边值方法,得到了一般块边值方法的误差估计结果。