【摘 要】
:
人脸表情识别是一项极具挑战的模式识别任务,在例如医学研究、交通安全、公共安防、刑侦审讯、影视娱乐等领域有重要的现实意义。对于可预见的未来世界中的高效人机交互,正确快速的识别用户表情也是一项必不可少的技术。近十年来,表情识别的研究进度突飞猛进,从小数据的室内研究转向了具有更大数据量的室外研究,研究方法也从传统方法变革为深度学习方法。深度表情识别的主要难点有以下几点:缺乏有效训练数据、存在大量表情无关
论文部分内容阅读
人脸表情识别是一项极具挑战的模式识别任务,在例如医学研究、交通安全、公共安防、刑侦审讯、影视娱乐等领域有重要的现实意义。对于可预见的未来世界中的高效人机交互,正确快速的识别用户表情也是一项必不可少的技术。近十年来,表情识别的研究进度突飞猛进,从小数据的室内研究转向了具有更大数据量的室外研究,研究方法也从传统方法变革为深度学习方法。深度表情识别的主要难点有以下几点:缺乏有效训练数据、存在大量表情无关的冗余信息、模糊表情的客观存在。本文主要针对其中的模糊表情问题开展研究工作。为了提高深度表情识别的识别精度,本文做了以下研究工作:(1)针对表情分类的主观性,联系生活实际,本文提出了一种强化类间区分的深度残差表情识别算法。首先,通过先验实验和阈值算法,量化分析类间关系,验证本文观点的同时得到各类表情的强弱关系集合;然后,将表情之间的关系通过固定参数的形式融合到网络支路设计之中;最后,在添加了分支的整体网络上做训练。在流行的大型野外数据库上的实验表明,该方法性能优异,较之基本方法提升显著,在一系列的先进方法中也有一定的竞争力。(2)针对表情分类中单标签信息量不足的问题,本文提出一种逆K-fold的标签分布深度表情识别算法,将one-hot标签转化为概率分布,更符合当前人们对表情识别的认知。首先将训练数据拆分为K份,在一份数据上进行学习,对其余K-1份数据做预测;然后,循环K次,对于训练数据整体得到每个数据被标记过K-1次的标签分布;最后,将这些标签作为数据的标签分布对测试集做预测。在多个经典的CNN框架上应用了该方法,在RAF-DB和Affectnet上的实验表明,该方法在大数据量、标签质量差的情况下明显有效。(3)同样是针对表情分类中单标签信息量不足的问题,提出了一种渐近真值的标签分布表情识别算法。在不对数据库做拆分的前提下,充分利用数据库的原本信息完成标签分布的生成和利用。首先,在数据训练时,利用单标签学习,收集数据整体分布的均值;然后,在数据批次的粒度上,逐步逼近数据标签真值;最后,利用生成的数据标签分布重新训练整个网络模型。实验表明,该方法对网络模型的精度提升有明显的作用,在与先进算法的对比中也有一定的竞争力。
其他文献
在一个机器学习任务中,特征选择是样本预测的关键一步,而在面对复杂的未知领域时,我们很难判断特征与预测目标或者特征与特征之间的关联性,所以在建立一个神经网络时,常常采用随机生成的方式来初始化神经网络的参数,然后再通过一系列的算法来完成特征的选择和高维映射。有效的特征选择可以降低输入特征的维度,还可以防止过拟合,提高模型泛化能力和可解释性,加快模型的训练速度,合适的特征映射还可以提高模型的预测性能。本
随着人机交互领域的不断扩张,人类赖以生存的物质世界与数字世界的边界愈发模糊,这导致了现实世界中真实物体的感受缺失。感受的过程是人与世界建立生命联系的过程,如何让人们重新关注现实世界中的直接感受成为当下之思。在众多数字化产物中,互动装置真实可感的实体界面,给予观众真切体验,但其相关研究多集中于技术应用和艺术观念层面,缺乏对实体界面及体验者自身的关注。体验者的亲历性决定了实体界面与“身体”相互蕴涵的交
传统的ELM优化算法关注的焦点都在隐含层输出权重上面,忽视了隐含层输入与输出的分布方式,针对这一容易令人忽视的方向,本文提出了基于高斯分布优化仿射参数的极限学习机模型,具体研究内容如下:针对让隐含层输出强制服从均匀分布效果不佳的问题,提出了在高斯分布下优化仿射变换的极限学习机(Extreme Learning Machine for Optimized Affine Transformation
论文针对目前乘坐扶梯经常出现的事故和危险行为,使用图像处理方法对扶梯上携带宠物、推车、抱小孩、攀爬等异常行为进行实时检测预警,在此基础上开发出智能监控系统,对扶梯场景进行实时检测分析和在线报警,保护乘客安全。论文主要进行了以下几个方面的研究:第一,针对扶梯入口、出口出现的快速运动导致的目标运动模糊问题,提出基于生成对抗网络的去运动模糊算法。使用生成对抗网络对模糊图片进行重构,以降低运动模糊的影响。
在当今社会的各个领域中,智能化是未来发展的大趋势;生活中的各类物联网产品、汽车飞机的无人驾驶技术、雷达系统、设备结构监测、基础建筑的安全检测以及工业生产自动化及其机器人系统都需要更加智能的感知技术;这就对传感器的感知精度和速度提出了更高的要求,且需要覆盖范围更广、覆盖密度更高的传感器网络。以工业生产中智能机器人为例,智能机器人需要代替人类在极端的环境下进行大量的危险性高、重复率高、难度大以及长时间
近年来,工业以太网技术促进了工业控制系统(Industrial Control System,ICS)和信息技术(Information Technology,IT)网络的集成,使得ICS信息化程度不断加深。信息网络集成虽然提高了系统生产效率,但也带来了更多新的信息安全问题。同时系统中设备节点数量众多且拓扑结构呈现分布式的趋势,传统中心化信息控制的方式中的性能瓶颈和安全问题将会日益明显。就关键基础
表面等离子体共振(SPR)传感器是一种免标记、高灵敏的光学传感器,它的原理是当入射光引起金属与介质界面的SPR时,可获得与共振波长一一对应的介质折射率。目前商用的SPR传感器均为棱镜耦合型,虽然灵敏度很高,但体积庞大,价格昂贵。随着纳米制备工艺的成熟和人们对传感器小型化的迫切需求,光栅耦合型SPR传感器应运而生。目前的光栅耦合型SPR传感器存在灵敏度较低,无法检测不透明溶液的问题,这限制了此类传感
随着车辆数量日益增多,道路交通问题密切影响着日常生活。交通监管部门需要通过视频数据实时监控路况信息。无人机技术的快速发展,使从空中视角获得数据成为可能。无人机能提供更加广阔灵活的视角,包含更多的信息,同时也能胜任长距离监控。在无人机场景下通过图像和视频对车辆目标进行跟踪,也有望成为交通监控的新方式。无人机视角下跟踪场景不够稳定,目标容易产生大幅度的形变,也可能被环境所遮挡。无人机的硬件平台也决定了
基于视觉的微小振动放大技术是一种通过处理图像时空信息,放大微小但重要变化的技术。机器视觉振动放大技术被用来揭示肉眼难以察觉微小变化,在工程结构模态识别、医疗心率检测,故障损伤检测等领域有重要价值。论文对视频微小振动放大技术进行详细的分析和研究,从多角度对微小振动放大算法进行优化,并将优化后的算法应用于非接触式心率检测,具有较好的工程应用价值。论文针对微小振动视频中存在大运动干扰,导致视频放大结果出
自NB-IoT(Narrow-Band Internet of Things,窄带物联网)技术提出以来,各项技术标准逐步得到完善,当前已经成为低功耗广域物联网中最具潜力的技术之一。在与各领域逐渐实现深度融合的过程中,NB-IoT设备将被大规模部署,考虑到NB-IoT系统的180KHz有限频谱资源,海量设备接入时将有可能发生资源竞争现象,使系统出现接入拥塞,从而导致网络接入量降低、资源浪费等问题。因