ZnO/SnO2核壳结构阵列的制备及其染料敏化太阳能电池性能研究

被引量 : 2次 | 上传用户:lanxoceco2003
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在积极开发新能源的今天,染料敏化太阳能电池(DSSC)以其具有较高的光电转换效率、较低的生产成本以及适合产业化生产等优势受到人们的大量关注。DSSC的光阳极材料主要包括TiO2、ZnO和Sn02等化合物半导体材料。目前为止,研究最多并且光电转换效率最高的是Ti02基DSSC,最高效率可达11%。但是由于Ti02容易光降解染料分子、电子迁移率低易造成载流子在传输过程的复合等问题阻碍了TiO2基DSSC的发展。ZnO凭借其电子传输速度(115-155cm2V-1S-1)远高于TiO2(10-5c
其他文献
能源和环境问题是当今社会发展所面临的主要问题,开发清洁环保的新能源成为人类实现可持续发展的必然选择。固体氧化物燃料电池(SOFC)作为一种直接将化学能转化为电能的装置,具有能量转化效率高、环境污染小和燃料适应性强等优点,成为研究热点之一。传统SOFC对工作温度要求较高,高的工作温度必将带来电极的烧结退化、界面的扩散反应以及难以封接等问题,因此降低电池操作温度已成为SOFC的主要研究方向。其中质子导
由于稀土离子掺杂的上转换发光材料在荧光粉、太阳能电池、生物荧光标记、色彩显示以及绿色照明等领域具有广泛的应用前景。掺杂稀土离子的纳米空心微球是近年来上转换材料的
近来,ZnO由于形貌容易控制、易合成、成本低、物理化学性质优异,已被广泛应用于制备成各种气体传感器。ZnO纳米结构传感器展现出响应高、响应恢复快、稳定性好等优点,但工作
量子信息科学是计算机、信息科学与量子物理相结合而产生的新兴交叉学科,与信息网络、超导纳米等研究领域有着大量的交叉,是未来科技发展的重大方向之一。量子信息科学不仅为信
随着薄膜科学的发展和薄膜产业的进步,多种薄膜制备技术也取得了较快的发展。磁控溅射镀膜技术因具有很多的优点而被广泛应用,例如在表面微加工,表面改性,光学薄膜,半导体薄膜,微电子和光电子技术等领域。其优点为:薄膜致密度高与基片附着性好,均匀性好,沉积速率快,可方便地制取高熔点物质的薄膜,成膜面积大等。但它也有一些我们不可忽视的缺点,比如制备的薄膜表面粗糙,颗粒较大,均匀性欠佳,结构不够致密等等。为克服
随着消费电子和高速网络对无线通信需求的增长,通信产业获得进一步发展的良好机遇。无线服务必须提供更好的吞吐量、服务质量和接入速度。基于不同标准的无线设备将越来越多。